Jerk Chaotic System: Analysis, Circuit Simulation, Control and Synchronization with Application to Secure Communication

Authors

  • A. D. Adelaja
  • O. S. Onma
  • B. A. Idowu
  • S. T. Opeifa
  • C. O. Ogabi

DOI:

https://doi.org/10.62292/njtep.v2i2.2024.39

Keywords:

Chaos, Control, Synchronization, Secure communication

Abstract

Dynamical behaviors of 3D Jerk system were examined in terms of equilibrium, stability, dissipative, and phase space attractor in this study. The system’s practical applications were demonstrated through circuit realization and synchronization scheme via active backstepping control with its effectiveness demonstrated in secure communication. The viability of the theoretical model of 3D Jerk system was confirmed using electronic circuit workbench designed in MultiSIM enviroment. A nonlinear feedback controller was designed using the recursive backstepping technique to control and track a desire function. For secure communication application, active backstepping method was adopted to synchronize two identical chaotic systems evolving from different initial conditions. It was demonstrated that when the controller was activated, the systems synchronize successfully. The results of the active backstepping designed controllers were numerically applied in the area of secure communication, with the variable of the drive being encrypted information transmitted through a coupling channel. Using an additive encryption masking scheme, the encrypted signal was a superposition of sinusoidal information specified by period function and chaotic carrier generated from a variable of the Jerk system. The transmitted information signal was successfully retrieved from the chaotic response signal using an inverse function decryption algorithm, thereby confirming the effectiveness and robustness of the designed controller.

References

Adelaja A. D., Laoye J. A., Roy-Layinde T. O. & Odunaike R. K. (2021). Experimental Realization and Active Backstepping Synchronization of Chaotic System with Line of Equilibrium and Its Application to Secure Communication. Nigerian Journal of Physics (NJP), 30(1):183 – 193. ISSN- 1595-0611.

Adelakun A. O., Adelakun A. A. & Onma O. S. (2014). Bidirectional synchronization of two identical Jerk oscillators with memristor. Int. J. Elect. Elect. Telecom. Eng., 45, 2051-3240.

Bai E. W. & Longngren K. E. (1997). Synchronization of two Lorenz systems using active control. Chaos, Solitons and fractals, 8: 51-58.

Chang W. D., Shih S. P. & Chen C. Y. (2015). Chaotic Secure Communication Systems with an Adaptive State Observer. J. Con. Sci. Eng., 471913: 1-7.

Chua L. & Roska T. (2002). Cellular neural networks and visual computing. Cambridge University Press Uk.

Chua L. O. (1998). CNN: A paradigm for complexity. World scientific Singapore.

El-Dessoky M. M. & Yassen M. T. (2012). Adaptive feedback control for chaos control and synchronization for new chaotic Dynamical system. Math. Prob. Eng. 2012: 1-12.

Fortuna L., Frasca M. & Xibilia M. G. (2009). Chua’s circuit implementations: Yesterday, today and tomorrow. World scientific, Singapore.

Idowu B. A., Olusola O. I., Onma O. S., Vaidyanathan V, Ogabi C. O. & Adejo O. A. (2019). Chaotic financial system with uncertain parameters – its control and synchronization. Int. J. Nonlinear Dyn. Control, 1: 271–286.

Idowu B. A., Vaidyanathan V., Sambas A., Olusola O. I. & Onma O. S. (2018). A new chaotic finance system: Its analysis, control, synchronization and circuit design. Studies in Systems Decision and Control, 133: 271-295.

Kellert S. H. (1993). In the wake of Chaos: Unpredictable order in Dynamical systems. University of Chicago Press.

Kemih K., Ghanes M., Remmouche R. & Senouci A. (2015). A 5D-dimensional hyperchaotic system and its circuit simulation EWB. Math. Sci., 4: 1- 4.

Kryrtsou C. & Labys W. C. (2007). Detecting positive feedback in multivariate time series and US inflation. Physica A: Statistical Mechanics and its applications, 377: 227-229.

Kyrtsou C. & Labys W. C. (2006). Evidence for chaotic dependence between US inflation and commodity prices. J. Macroeconomics, 28: 256-266.

Laoye J. A., Adelaja A. D., Roy-Layinde T. O. & Odunaike R. K. (2021). Circuit Realization, Active Backstepping Synchronization of Sprott I System with Application to Secure Communication. FUW Trends Science and Technology Journal, 6: 482-489.

Laoye J. A., Vincent U. E. & Kareem S. O. (2009). Chaos control of 4-D chaotic Systems using recursive backstepping nonlinear controller. Chaos Solitons and Fractals. 3: 356-362.

Li C., Liao X., Wong K. W. (2005). Lag synchronization of hyperchaos with applications to secure communications. Chaos Solitons Fractals. 23: 183-193.

Liu S.Y. & Zhu S. J. (2008). Study on the chaos anti control technology in nonlinear vibration system. J. Sound and vibration, 310: 855-864.

Mascolo S. (1997). Backstepping design for controlling Lorenz chaos. In proceedings of the 36th IEEE CDC San Diego, CA. 56, pp 1500-1501.

Medhaffar H., Feki M., Derbel N. (2019). Stabilizing periodic orbits of Chua’s system using adaptive fuzzy sliding mode controller. Int. J. Intelligent computing and cybernetics. 12: 102-126.

Njah A. N. (2009). Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn., 61: 1-9.

Olusola O. I., Vincent U. E., Njah A. N. & Ali E. (2011). Control and synchronization of chaos in biological systems via backstepping design. Int. J. Nonlinear Sci., 11: 121-128.

Onma O. S. & Akinlami J. O. (2017). Dynamics, adaptive control and extended synchronization of hyperchaotic system and its application to secure communication. Int. J. Chaos control, modeling and simulation, 6: 1-18.

Onma O. S., Adelakun A. O., Akinlami J. O. & Opeifa S. T. (2017). Backstepping Control and Synchronization of Hyperchaotic Lorenz-Stenflo System with Application to secure Communication. Far East J. Dyn. Syst., 29: 1-23.

Onma O. S., Heryantto B. & Foster, Subiyanto (2021). Adaptive Control and Multi-variables Projective Synchronization of Hyperchaotic Finance System. Conf. Series: Mater. Sci. Eng., 1115: 1-14.

Onma O. S., Olusola O. I. & Njah A. N. (2014). Control and synchronization of chaotic and hyperchaotic Lorenz systems via extended backstepping techniques. J. Nonlinear Dynamics, 2014: 1-15.

Onma O. S., Olusola O. I. & Njah A. N. (2016). Control and Synchronization of chaotic and hyperchaotic Lorenz system via extended adaptive control method. Far East J. Dyn. Syst., 28: 1-32.

Ott E. (2002). Chaos in Dynamical Systems. Cambridge University Press, New York. ISBN. 0-8133-4085-3.

Pecora L. M. & Carroll T. L, (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64: 821-824.

Pham V. T., Volos C. K., Vaidyanathan S., Le T. P. & Vu V. Y. (2015). A memristor-based hyperchaotic system with hidden attractors, Dynamics, Synchronization and Circuital. J. Eng. Sci. Tech. Special issue on synchronization and control of chaos: Theory, methods and applications, 8: 205-214.

Rajagopal K., Vaidhyanathan S., Karthikeyan A. & Duraisamy P. (2017). Dynamical analysis and chaos suppression in a fractional order brushless DC motor. Elect. Eng. 99: 721-733.

Sambas A., Vaidyanathan S., Zhang S., Zeng Y., Mohamed M. A. & Mamat M. (2019). A new double-wing chaotic system with coexisting attractors and line equilibrium: Bifurcation analysis and electronic circuit simulation. IEEE Access. 1179: 1-10.

Sarasu P. & Sundarapandian V. (2011a). Active controller design for generalized projective synchronization of four-scroll chaotic systems. Int. J. Syst Signal control Eng. Appl. 4: 26-33.

Sarasu P. & Sundarapandian V. (2011b). The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int. J. Syst. Signal control Eng. Appl., 4: 26-33.

Strogatz S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. Perseus Books, Massachusetts, USA.

Tirandaz H. & Hajipour A. (2017). Adaptive synchronization and antisynchronization of TSUCS and Lu ̈ unified chaotic systems with unknown parameters. Optik.130: 543-549.

Vaidyanathan, S., He, S., & Simbas, A. (2021). A new multistable double-scroll 4-D hyperchaotic system with no equilibrium point, its bifurcation analysis, synchronization and circuit design. Archives of Control Sciences, 31.

Vaidyanathan S., Sambas A., Mohammed M. A., Mamat M., Sanjaya M. (2018). A new hyperchaotic hyperjerk system with three nonlinear terms, its synchronization and circuit simulation. Int. J. Eng. Tech. 7: 1585-1592.

Vincent U. E. (2008). Chaos synchronization using active control and backstepping control. A Comparative Analysis. Non-linear Analysis: Theory and applications. 13: 256-261.

Volos C. K., Kyprianidis I. M., Stavrinidas S. G., Stouboulos I. N., Magafas I. & Anagnostopoulos A. N. (2001). Nonlinear dynamics of a financial system from an engineering’s point of view. J. Eng. Sci. Tech. Rev. 4: 281-285.

Wang X. & Wang Y. (2011). Adaptive control for synchronization of a four-dimensional chaotic system via a single variable. Nonlinear Dyn. (65): 311-316.

Yassen M. T. (2003). Adaptive control and synchronization of a modified chua’s circuit system. Appl. Math. Comput. 135: 113-128.

Yau H. T., Pu Y. C. & Li S. C. (2012). Application of a chaotic synchronization system to secure communication. Information technology and control, 4(3): 274 - 282.

Downloads

Published

2024-06-30