The Magnetic and Aharonov-Bomh Flux Fields of Carbon Monoxide Diatomic Molecule with Energy-Dependent Screened Kratzer Potential

Authors

  • Nuhu Ibrahim
    University of Maiduguri image/svg+xml
  • Nura Yakubu
    University of Maiduguri
  • George G. Nyam
    University of Abuja
  • Mohammed Hassan
    University of Maiduguri
  • Uduakobong S. Okorie
    Akwa-Ibom State University
  • Lewis Obagboye
    National Mathematical Centre Abuja
  • Akpan N. Ikot
    University of Port Harcourt

Keywords:

Energy-Dependent Screened Kratzer Potential, Greene-Aldrich Approximation Scheme, Nikiforov-Uvarov Method, Magnetic, AB-flux fields

Abstract

An energy-dependent potential is a type of quantum mechanical potential in which the potential energy explicitly depends on the particle’s energy, rather than solely on its spatial coordinates as in conventional potentials. Energy-dependent potentials (EDPs) have gained attention in quantum mechanics due to their ability to model systems where the interaction strength varies with the particle’s energy, offering a more flexible description of molecular and nuclear interactions than conventional static potentials. This study analytically solves the two-dimensional Schrödinger equation with an Energy-Dependent Screened Kratzer Potential (EDSKP) using the Nikiforov-Uvarov (NU) method to obtain the energy eigenvalues of a carbon monoxide (CO) diatomic molecule under the influence of Magnetic and Aharonov-Bohm (AB) flux fields. The energy spectra are computed for different quantum numbers, showing that the energy levels decrease with increasing magnetic and AB-flux field strength. This decrease is more pronounced when the energy slope parameter is negative, indicating a field-induced stabilization of the molecule. Conversely, the energy levels increase rapidly when the energy slope parameter is positive, reflecting a stiffening interaction. These behaviors are graphically confirmed and offer insights into the quantum mechanical response of molecules under external perturbations. By adjusting the potential parameters, the well-known screened Kratzer potential model is recovered. In the absence of external fields and with a substitution for the magnetic quantum number, the energy eigenvalue of the three-dimensional Schrödinger equation is retrieved as a special case, which aligns with previous studies. These results provide useful perspectives for molecular physics, quantum control, and materials science

Dimensions

Abu-Shady, M. (2016). Heavy quarkonia and mesons in the Cornell potential with harmonic oscillator potential in the N-dimensional Schrödinger equation. International Journal of Applied Mathematics and Theoretical Physics, 2, 16–20. https://doi.org/10.11648/j.ijamtp.20160202.11 DOI: https://doi.org/10.1155/2016/4935940

Abu-Shady, M., Abdel-Karim, T. A., & Khokha, E. M. (2018). Exact solution of the N-dimensional radial Schrödinger equation via Laplace transformation method with the generalized Cornell potential. Journal of Theoretical Physics, 45, 567–587. https://doi.org/10.48550/arXiv.1802.02092 DOI: https://doi.org/10.1155/2018/7032041

Abu-Shady, M., & Ikot, A. N. (2019). Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. European Physics Journal, 54(4), 134–140. ). https://doi.org/10.1140/epjp/i2019-12685-y DOI: https://doi.org/10.1140/epjp/i2019-12685-y

Allosh, M., Mustafa, Y., Ahmed, N. K., & Mustafa, A. S. (2021). Ground and excited state mass spectra and properties of heavy-light mesons. Few-Body Systems, 62, 234. https://doi.org/10.1007/s00601-021-01608-1 DOI: https://doi.org/10.1007/s00601-021-01608-1

Amadi, P. O., Ikot, A. N., Ngiangia, A. T., Okorie, U. S., Rampho, G. J., & Abdullah, H. Y. (2020). Shannon entropy and Fisher information for screened Kratzer potential. International Journal of Quantum Chemistry, 120(14), e26246. https://doi.org/10.1002/qua.26246 DOI: https://doi.org/10.1002/qua.26246

Arda, A., & Sever, R. (2012). Approximate analytical solutions of a two-term diatomic molecular potential with centrifugal barrier. Journal of Mathematical Chemistry, 50, 1920–1930. https://doi.org/10.1007/s10910-012-0011-0 DOI: https://doi.org/10.1007/s10910-012-0011-0

Antia, A. D., Ituen, E. E., Obong, H. P., & Isonguyo, C. N. (2015). Analytical solution of the modified Coulomb potential using the factorisation method. International Journal of Recent Advances in Physics, 4(1), 55. https://doi.org/10.14810/ijrap.2015.4104 DOI: https://doi.org/10.14810/ijrap.2015.4104

Baura, A., Sen, M. K., & Bag, B. C. (2013). Effect of non-Markovian dynamics on barrier crossing dynamics of a charged particle in presence of a magnetic field. Chemical Physics, 417, 30–36. https://doi.org/10.1016/j.chemphys.2013.03.003 DOI: https://doi.org/10.1016/j.chemphys.2013.03.003

Bayrak, O., Boztosun, I., & Ciftci, H. (2007). Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry, 107, 540. https://doi.org/10.1002/qua.21141 DOI: https://doi.org/10.1002/qua.21141

Boucali, A., & Labidi, M. (2018). Shannon entropy and Fisher information of the one-dimensional Klein–Gordon oscillator with energy-dependent potential. Modern Physics Letters A, 33(6), 1850033. https://doi.org/10.1142/S0217732318500335

Boumali, A., & Labidi, M. (2018). Shannon entropy and Fisher information of the one-dimensional Klein–Gordon oscillator with energy-dependent potential. Modern Physics Letters A, 33(6), 1850033. https://doi.org/10.1142/S0217732318500335 DOI: https://doi.org/10.1142/S0217732318500335

Budaca, R. (2016). Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential. The European Physical Journal A, 52, 314. https://doi.org/10.1140/epja/i2016-16314-8 DOI: https://doi.org/10.1140/epja/i2016-16314-8

Das, T. (2016). D-dimensional Schrödinger equation for a square root potential. Electronic Journal of Theoretical Physics, 13(3), 117–124.

Dong, S., & Dong, S. H. (2002). Schrödinger equation with a Coulomb field in 2+1 dimensions. Physica Scripta, 66(5), 342. https://doi.org/10.1238/Physica.Regular.066a00342 DOI: https://doi.org/10.1238/Physica.Regular.066a00342

Edet, C. O., & Ikot, A. N. (2021). Effect of topological defect on the energy spectra and thermo-magnetic properties of CO diatomic molecule. Journal of Low Temperature Physics, 203, 111. https://doi.org/10.1007/s10909-021-02577-9 DOI: https://doi.org/10.1007/s10909-021-02577-9

Edet, C. O., Okoi, P. O., Yusuf, A. S., Ushie, P. O., & Amadi, P. O. (2020). Bound state solutions of the generalized shifted Hulthen potential. Indian Journal of Physics, 1–10. https://doi.org/10.1007/s12648-019-01650-0 DOI: https://doi.org/10.1007/s12648-019-01650-0

Edet, C. O., & Okoi, P. O. (2019). Any state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions. Revista Mexicana de Física, 65, 333–344. https://doi.org/10.31349/revmexfis.65.333 DOI: https://doi.org/10.31349/RevMexFis.65.333

Edet, C. O., Okorie, K. O., Louis, H., & Nzeata-Ibe, N. A. (2019). Any state solutions of the Schrödinger equation interacting with Hellmann-Kratzer potential model. Indian Journal of Physics, 94(2), 241–251. https://doi.org/10.1007/s12648-019-01467-x DOI: https://doi.org/10.1007/s12648-019-01467-x

Edet, C. O., Okorie, U. S., Osobonye, G., Ikot, A. N., Rampho, G. J., & Sever, R. (2020). Thermal properties of Deng-Fan-Eckart potential model using Poisson summation approach. Journal of Mathematical Chemistry, 18–25. https://doi.org/10.1007/s10910-020-01107-4 DOI: https://doi.org/10.1007/s10910-020-01107-4

Edet, C. O., Ettah, E. B., Aljunid, S. A., Endut, R., Ali, N., Ikot, A. N., & Asjad, M. (2022). Global quantum information-theoretic measures in the presence of magnetic and Aharonov-Bohm (AB) fields. Symmetry, 14(5), 976. https://doi.org/10.3390/sym14050976 DOI: https://doi.org/10.3390/sym14050976

Eshghi, M., Mehraban, H., & Ikhdair, S. M. (2015). Bound states of (1+1)-dimensional Dirac equation with kink-like vector potential and delta interaction. Acta Mathematicae Applicatae Sinica, English Series, 31(4), 1131–1140. https://doi.org/10.1007/s10255-015-0521-1 DOI: https://doi.org/10.1007/s10255-015-0521-1

Eshghi, M., & Mehraban, H. (2017). Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus Physique, 18(1), 47–56. https://doi.org/10.1016/j.crhy.2016.06.002 DOI: https://doi.org/10.1016/j.crhy.2016.06.002

Eshghi, M., & Mehraban, H. (2016). Effective of the q-deformed pseudoscalar magnetic field on the charge carriers in graphene. Journal of Mathematical Physics, 57(8). https://doi.org/10.1063/1.4960740 DOI: https://doi.org/10.1063/1.4960740

García-Martínez, J., García-Ravelo, J., Peña, J. J., & Schulze-Halberg, A. (2009). Exactly solvable energy-dependent potentials. Physics Letters A, 373(40), 3619–3623. https://doi.org/10.1016/j.physleta.2009.08.012 DOI: https://doi.org/10.1016/j.physleta.2009.08.012

Greene, R. L., & Aldrich, C. (1976). “Variational wave functions for a screened Coulomb potential”, Phys. Rev. A, 14, 2363. https://doi.org/10.1103/PhysRevA.14.2363 DOI: https://doi.org/10.1103/PhysRevA.14.2363

Gupta, P., & Mehrotra, I. (2012). Study of heavy quarkonium with energy dependent potential. Journal of Modern Physics, 3(10), 1530–1536. https://doi.org/10.4236/jmp.2012.310189 DOI: https://doi.org/10.4236/jmp.2012.310189

Hassanabadi, H., Maghsoodi, E., Oudi, R., Zarrinkamar, S., & Rahimov, H. (2012). Exact solution Dirac equation for an energy-dependent potential. European Physical Journal Plus, 127, 120. https://doi.org/10.1140/epjp/i2012-12120-1 DOI: https://doi.org/10.1140/epjp/i2012-12120-1

Hassanabadi, H., Rajabi, A. A., & Zarrinkamar, S. (2011). Exact solutions of D-dimensional Schrödinger equation for an energy-dependent potential by NU method. Communications in Theoretical Physics, 55(4), 541–544. https://doi.org/10.1088/0253-6102/55/4/01 DOI: https://doi.org/10.1088/0253-6102/55/4/01

Ibekwe, E. E., Ngiangia, A. T., Okorie, U. S., Ikot, A. N., & Abdullah, H. Y. (2020). Bound state solution of radial Schrödinger equation for the quark-antiquark interaction potential. Iranian Journal of Science and Technology, Transactions of Science. https://doi.org/10.1007/s40995-020-00913-4 DOI: https://doi.org/10.1007/s40995-020-00913-4

Ibrahim, N., Izam, M. M., & Jabil, Y. Y. (2024). Thermodynamic Properties of Diatomic Molecules in the Presence of Magnetic and Aharonov–Bohm (AB) Flux Fields with Shifted Screened Kratzer Potential. Journal of Low Temperature Physics. https://doi.org/10.1007/s10909-024-03205-y DOI: https://doi.org/10.1007/s10909-024-03205-y

Ibrahim, N., Izam, M. M., & Jabil, Y. Y. (2023). Energy spectra of shifted screened Kratzer potential (SSKP) for some diatomic molecules in the presence of magnetic and Aharonov-Bohm flux fields using extended Nikiforov-Uvarov method. Nigerian Journal of Physics (NJP), 32(1), 1595–0611. https://njp.nipngr.org/index.php/njp/article/view/30

Idiodi, J. O. A., & Onate, C. A. (2016). Entropy, Fisher information and variance with Frost-Musulin potential. Communications in Theoretical Physics, 66, 269. https://doi.org/10.1088/0253-6102/66/3/269 DOI: https://doi.org/10.1088/0253-6102/66/3/269

Ikhdair, S. M., & Sever, R. (2008). Solutions of Dirac equation for symmetric generalized Woods-Saxon potential by the hypergeometric method. arXiv preprint, arXiv:0808.1002. https://arxiv.org/abs/0808.1002

Ikot, A. N., Okorie, U. S., Ngiagian, A. T., Onate, C. A., Edet, C. O., Akpan, I. O., & Amadi, P. O. (2020). Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method. Eclética Química Journal, 45(1), 66–76. https://doi.org/10.26850/1678-4618eqj.v45.1.2020.p65-77 DOI: https://doi.org/10.26850/1678-4618eqj.v45.1.2020.p65-77

Ikot, A. N., Okorie, U. S., Sever, R., & Rampho, G. J. (2019). Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. European Physical Journal Plus, 134, 386. https://doi.org/10.1140/epjp/i2019-12783-x DOI: https://doi.org/10.1140/epjp/i2019-12783-x

Ikot, A. N., Edet, C. O., Amadi, P. O., Okorie, U. S., Rampho, G. J., & Abdullah, H. Y. (2020). Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential. European Physical Journal D, 74(159), 1–13. https://doi.org/10.1140/epjd/e2020-10084-9 DOI: https://doi.org/10.1140/epjd/e2020-10084-9

Ikot, A. N., Hassanabadi, H., & Abbey, T. M. (2015). Spin and pseudospin symmetries of Hellmann potential with three tensor interactions using Nikiforov–Uvarov method. Communications in Theoretical Physics, 64(6), 637–643. https://doi.org/10.1088/0253-6102/64/6/637 DOI: https://doi.org/10.1088/0253-6102/64/6/637

Inyang, E. P., Ntibi, J. E., Inyang, E. P., William, E. S., & Ekechukwu, C. C. (2020). Any state solutions of the Schrödinger equation interacting with class of Yukawa-Eckart potentials. International Journal of Innovative Science, Engineering & Technology, 11(7), 2432. http://ijiset.com/vol7/v7s11/IJISET_V7_I11_05.pdf

Inyang, E. P., Inyang, E. P., Akpan, I. O., Ntibi, J. E., & William, E. S. (2021). Masses and thermodynamic properties of a quarkonium system. Canadian Journal of Physics, 99, 990. https://doi.org/10.1139/cjp-2020-0578 DOI: https://doi.org/10.1139/cjp-2020-0578

Inyang, E. P., Inyang, E. P., William, E. S., & Ibekwe, E. E. (2021). Study on the applicability of Varshni potential to predict the mass-spectra of the quark–antiquark systems in a non-relativistic framework. Jordan Journal of Physics, 14(4), 337–345. https://arxiv.org/abs/2101.00333 DOI: https://doi.org/10.47011/14.4.8

Inyang, E. P., Ayedun, F., Ibanga, E. A., & Lawal, K. M. (2022). Analytical Solutions to the Schrödinger Equation with Collective Potential Models: Application to Quantum Information Theory. East European Journal of Physics, (4), 87–98. https://doi.org/10.26565/2312-4334-2022-4-07 DOI: https://doi.org/10.26565/2312-4334-2022-4-07

Kaushal, R. P., Rajendrasinh, H. P., & Rai, A. K. (2020). Bound state solution and thermodynamical properties of the screened cosine Kratzer potential under influence of the magnetic field and Aharonov–Bohm flux field. Annals of Physics, Article 168335. https://doi.org/10.1016/j.aop.2020.168335 DOI: https://doi.org/10.1016/j.aop.2020.168335

Kryuchkov, S. V., & Kukhar, E. I. (2014). Effect of high-frequency electric field on the electron magnetotransport in graphene. Physica B: Condensed Matter, 445, 93–97. https://doi.org/10.1016/j.physb.2014.04.008 DOI: https://doi.org/10.1016/j.physb.2014.04.008

Lombard, R. J., & Mares, J. (2009). The many-body problem with an energy-dependent confining potential. Physics Letters A, 373(4), 426–429. https://doi.org/10.1016/j.physleta.2008.12.009 DOI: https://doi.org/10.1016/j.physleta.2008.12.009

Lombard, R. J., Mareš, J., & Volpe, C. (2007). Wave equation with energy-dependent potentials for confined systems. Journal of Physics G: Nuclear and Particle Physics, 34, 1879. https://doi.org/10.1088/0954-3899/34/9/002 DOI: https://doi.org/10.1088/0954-3899/34/9/002

Ma, Z. Q., & Xu, B. W. (2005). Quantum correction in exact quantization rules. Europhysics Letters, 69, 685. https://doi.org/10.1209/epl/i2004-10418-8 DOI: https://doi.org/10.1209/epl/i2004-10418-8

Martinez-Flores, C. (2021). Shannon entropy and Fisher information for endohedral confined one- and two-electron atoms. Physics Letters A, 386, 126988. https://doi.org/10.1016/j.physleta.2020.126988 DOI: https://doi.org/10.1016/j.physleta.2020.126988

Miranda, M. G., Sun, G. H., & Dong, S. H. (2010). The solution of the second Pöschl–Teller like potential by Nikiforov–Uvarov method. International Journal of Modern Physics E, 19(1), 123–129. https://doi.org/10.1142/S0218301310014704 DOI: https://doi.org/10.1142/S0218301310014704

Nikiforov, A. F., & Uvarov, V. B. (1988). Special functions of mathematical physics (Vol. 205). Birkhäuser. https://doi.org/10.1007/978-1-4757-1595-8 DOI: https://doi.org/10.1007/978-1-4757-1595-8

Ntibi, J. E., Inyang, E. P., Inyang, E. P., & William, E. S. (2020). Relativistic treatment of D-dimensional Klein–Gordon equation with Yukawa potential. International Journal of Innovative Science, Engineering & Technology, 11(7), 2348–7968.

https://doi.org/10.13140/RG.2.2.32473.34406

Olendski, O. (2019). Quantum information measures of the Aharonov-Bohm ring in uniform magnetic fields. Physics Letters A, 383, 1110–1116. https://doi.org/10.1016/j.physleta.2018.12.040 DOI: https://doi.org/10.1016/j.physleta.2018.12.040

Omugbe, E., Osafile, O. E., Okon, I. B., Inyang, E. P., William, E. S., & Jahanshir, A. (2022). Any state energy of the spinless Salpeter equation under the Cornell potential by the WKB approximation method: An application to mass spectra of mesons. Few-Body Systems, 63, 7. https://link.springer.com/article/10.1007%2Fs00601-021-01705-1 DOI: https://doi.org/10.1007/s00601-021-01705-1

Onate, C. A., Adebimpe, O., Adebesin, B. O., & Lukman, A. F. (2018). Information-theoretic measure of the hyperbolical exponential-type potential. Turkish Journal of Physics, 42(4), 402–408. https://doi.org/10.3906/fiz-1802-40 DOI: https://doi.org/10.3906/fiz-1802-40

Onate, C. A., Onyeaju, M. C., Bankole, D. T., & Ikot, A. N. (2020). Eigensolution techniques, expectation values and Fisher information of Wei potential function. Journal of Molecular Modeling, 26, 311. https://doi.org/10.1007/s00894-020-04573-4 DOI: https://doi.org/10.1007/s00894-020-04573-4

Onate, C. A., Onyeaju, M. C., Ikot, A. N., Ebomwonyi, O., & Idiodi, J. O. A. (2019). Fisher information and uncertainty relations for potential family. International Journal of Quantum Chemistry, 119(19), e25991. https://doi.org/10.1002/qua.25991 DOI: https://doi.org/10.1002/qua.25991

Onate, C. A., Onyeaju, M. C., Ituen, E. E., Ikot, A. N., Ebomwonyi, O., Okoro, J. O., & Dopamu, K. O. (2018). Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential. Indian Journal of Physics, 92, 487–496. https://doi.org/10.1007/s12648-017-1124-x DOI: https://doi.org/10.1007/s12648-017-1124-x

Onate, C. A., & Ojonubah, J. O. (2016). Eigensolutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach. Journal of Theoretical and Applied Physics, 10, 21–26. https://doi.org/10.1007/s40094-015-0196-2 DOI: https://doi.org/10.1007/s40094-015-0196-2

Onate, C. A., Onyeaju, M. C., Ikot, A. N., & Ojonubah, J. O. (2016). Analytical solutions of the Klein–Gordon equation with a combined potential. Chinese Journal of Physics, 54(5), 820–829. https://doi.org/10.1016/j.cjph.2016.08.007 DOI: https://doi.org/10.1016/j.cjph.2016.08.007

Okoi, P. O., Edet, C. O., & Magu, T. O. (2020). Relativistic treatment of the Hellmann-generalized Morse potential. Revista Mexicana de Física, 66(1), 1–13. https://doi.org/10.31349/RevMexFis.66.1 DOI: https://doi.org/10.31349/RevMexFis.66.1

Qiang, W. C., & Dong, S. H. (2010). Proper quantization rule. Europhysics Letters, 89(1), 10003. https://doi.org/10.1209/0295-5075/89/10003 DOI: https://doi.org/10.1209/0295-5075/89/10003

Rampho, G. J., Ikot, A. N., Edet, C. O., & Okorie, U. S. (2020). Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. Molecular Physics. https://doi.org/10.1080/00268976.2020.1821922 DOI: https://doi.org/10.1080/00268976.2020.1821922

Rani, R., Bhardwaj, S. B., & Chand, F. (2018). Mass spectra of heavy and light mesons using asymptotic iteration method. Communications in Theoretical Physics, 70, 179. https://doi.org/10.1088/0253-6102/70/2/179 DOI: https://doi.org/10.1088/0253-6102/70/2/179

William, E. S., Inyang, E. P., & Thompson, E. A. (2020). Arbitrary solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model. Revista Mexicana de Física, 66(6), 730–741. https://doi.org/10.31349/RevMexFis.66.730 DOI: https://doi.org/10.31349/RevMexFis.66.730

Yamano, T. (2024). Shannon entropy and Fisher information of solitons for the cubic nonlinear Schrödinger equation. European Physical Journal Plus, 139, 595. https://doi.org/10.1140/epjp/s13360-024-05402-w DOI: https://doi.org/10.1140/epjp/s13360-024-05402-w

Yekken, R., & Lombard, R. J. (2010). Energy-dependent potentials and the problem of the equivalent local potential. Journal of Physics A: Mathematical and Theoretical, 43, 125301. https://doi.org/10.1088/1751-8113/43/12/125301 DOI: https://doi.org/10.1088/1751-8113/43/12/125301

Yekken, R., Lassaut, M., & Lombard, R. J. (2013). Applying supersymmetry to energy-dependent potentials. Annals of Physics, 338, 195–206. https://doi.org/10.1016/j.aop.2013.08.005 DOI: https://doi.org/10.1016/j.aop.2013.08.005

Zhang, M. C., Sun, G. H., & Dong, S. H. (2010). Exactly complete solutions of the Schrödinger equation with a spherically harmonic oscillatory ring-shaped potential. Physics Letters A, 374(5), 704–708. https://doi.org/10.1016/j.physleta.2009.11.072 DOI: https://doi.org/10.1016/j.physleta.2009.11.072

Zhang, L. H., Li, X. P., & Jia, C. S. (2008). Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin–orbit coupling term. Physics Letters A, 372, 2201–2207. https://doi.org/10.1016/j.physleta.2007.11.022 DOI: https://doi.org/10.1016/j.physleta.2007.11.022

Zhang, L. H., Li, X. P., & Jia, C. S. (2011). Approximate solutions of the Schrödinger equation with the generalized Morse potential model including the centrifugal term. International Journal of Quantum Chemistry, 111, 1870. https://doi.org/10.1002/qua.22477 DOI: https://doi.org/10.1002/qua.22477

Published

2025-09-30

How to Cite

The Magnetic and Aharonov-Bomh Flux Fields of Carbon Monoxide Diatomic Molecule with Energy-Dependent Screened Kratzer Potential. (2025). Nigerian Journal of Theoretical and Environmental Physics, 3(2), 68-76. https://doi.org/10.62292/njtep.v3i2.2025.97

How to Cite

The Magnetic and Aharonov-Bomh Flux Fields of Carbon Monoxide Diatomic Molecule with Energy-Dependent Screened Kratzer Potential. (2025). Nigerian Journal of Theoretical and Environmental Physics, 3(2), 68-76. https://doi.org/10.62292/njtep.v3i2.2025.97