Theoretical Investigation of Quantum Confinements in Spherical PbSrSe Semiconductor Quantum Dots

Authors

  • Chinkata Joseph Uwaoma Department of Physics, Michael Okpara University of Agriculture, Umudike
  • C. I. Oriaku Department of Physics, Michael Okpara University of Agriculture, Umudike
  • E. C. Nwaokorongwu Department of Physics, Michael Okpara University of Agriculture, Umudike
  • E. I. Okwara Department of Physics, Michael Okpara University of Agriculture, Umudike

DOI:

https://doi.org/10.62292/njtep.v3i1.2025.60

Abstract

One of the IV-VI material systems that have shown promising growth and sustainability in optoelectronic applications is PbSrSe quantum dot structure (QDs) material. However, the material system belongs to the lead salt semiconductor group and has a constant energy surface with prolate ellipsoids of revolution, as well as a strongly nonparabolic energy band. In this study, the particle in a box model based on the effective mass approximation is used to theoretically investigate quantum confinement in PbSrSe spherical semiconductor quantum dots. For the first four excited states explored, it is found that the transition energies of   quantum dot depends on the quantum dot size.

References

Ahmed, S. and Mohammed, S. (2010). Electronic structure of InN/GaN quantum dots: Multimillion-atom tight-binding simulations. IEEE Transactions on Electron Devices,” 57(1):164-173.

Alivisatos, R.C. (1996). Electrons in Artificial atoms. Nature, 379(6564): p.413-419.

Fang, X. M., Philippopoulos, P., Culcer, D., Coish, W. A. and Chesi, S. (2023). Recent advances in hole-spin qubits. Mater. Quantum Technol., 3 (2023) 012003, 1-28

Guo, Q., Ong, C. K., Poon, H. C. & Feng, Y. P. (1996). Calculation of electron effective masses in AlAs. Basic Solid State Physics, 197(1): 111-117. https://doi.org/10.1002/pssb.2221970117

Han, H. S. (2015). Quantum dot/Antibody conjugates for in Vivo Cytometric Imaging in mice. Proceedings of the National Academy of Sciences, 112(5): 1350-1355.

Hanada, T. (2013). Basic Properties of ZnO, GaN, and Related Materials. Journal of Applied Physics, 2(3), 1-19.

Heiner, L. (2023). Quantum dots – Seeds of Nanoscience. The Royal Swedish Academy of Sciences.

Ikeri, H. I., Tarry, S. T., Achuka, E. I., Eze, C. N., Asielu, O. K. & Ndubueze, N. D. (2024). Optical properties of PbSe, PbS, and PbTe semiconductor quantum dots and their applications. SSRG International Journal of Material Science and Engineering, 10(2): 19-23. http://creativecommons.org/licenses/by-nc-nd/4.0/

Iyer, G. and Shimon W. (2011). Single-Step Conjugation of Antibodies to Quantum Dots for PLabeling Cell Surface Receptors in Mammalian Cells. Methods Mol. Biol., 751: 553-563.

Khodr, M. (2017). Calculations of the effective masses and emitted wavelengths of PbSe/PbSrSe quantum well normal and oblique degenerative valleys. Far East Journal of Electronics and Communications, 17(3): 651-660. http://dx.doi.org/10.17654/EC017030651

Khodr, M. F. and McCann, J. F. (2014). Theoretical Analysis and Design of PbSe/PbSrSe Quantum well structures of Fabricating Tunable Mid-infrared laser. International Journal of Applied Engineering Research, 9(17), 40-65.

Lambrecht, A., Herres, N., Spanger, B., Kuhn, K., Böttner, H., Tacke, M. and Evers, J. (1991). Molecular beam epitaxy of Pb1-xSrxSe for the use in IR devices. Journal of Crystal Growth, 108(1-2), 301-308

Majed, F. and Khodr, M. F. (2015). SQW PbSe/PbSrSe emitted wavelength calculations for breath analysis applications. International Journal of Applied Engineering Research, 10(24), 0973-456.

McCann, P. J., Namjou, K. and Fang, X. M. (1999). Above-room-temperature continuous-wave mid-infrared photoluminescence from PbSe/PbSrSe quantum wells. APPL. PHYS. LETT. 75, 3608–3610.

Müller, P., Zogg, H., Fach, A., John, J., Paglino, C., Tiwari, A.N., Krejci, M. and Kostorz, G. (1997). Reduction of Threading Dislocation Densities in Heavily Lattice Mismatched PbSe on Si(111) by Glide. Phys. Rev. Lett. 78, 3007. https://doi.org/10.1103/PhysRevLett.78.3007

Nozik, A. J. (2002). Quantum dot solar cells. Physica E: Low dimensional Systems and Nanostructures, 14(1): 115-120.

Oriaku, C. I. and Khodr, M., (2017). Calculation of the effective masses and emitted wavelengths of PbSe/PbSrSe quantum well normal and oblique degenerate valleys. East Journal of Electronic and Communications, 17(3).

Oriaku, C. I., Noor A., Maryam E. and Wala A., (2022). Introduction to quantum dots definition and applications. The University of Jordan.

Wei, W., (2014). Two intermediate bands solar cells of InGaN/InN quantum dot supercrystals. Appl. Phys. A, 116(3):1009-1016.

Zhong, S., Wu, M. & Lei, X. (2016). First-principle calculations of effective mass of silicon crystal with vacancy defects. Materials Science-Poland, 34(4): 916-923. https://doi.org/10.1515/msp-2016-0128

Downloads

Published

2025-03-24