Thermo-Magnetic properties of Two-Dimensional Non-Relativistic  Schrödinger Equation for the Attractive Radial Potential under External Magnetic and Aharonov-Bohm Flux Fields

Authors

  • Mohammed H. Imrana
    Ibrahim Badamasi Babangida University Lapai
  • Adam Z. Ngari
    Nigerian Army University Biu
  • Peter B. Teru
    University of Maiduguri image/svg+xml
  • A. M. Gyobe
    Nigeria Maritime University of Okeronkoko
  • Ndom B. Ndom
    Air Force Institute of Technology Kaduna image/svg+xml
  • Jibrin A. Yabagi
    Ibrahim Badamasi Babangida University image/svg+xml
  • Babakatcha Ndanusa
    Ibrahim Badamasi Babangida University image/svg+xml

Keywords:

Thermo-magnetic properties, Attractive radial potential, Non-relativistic solution, External magnetic field, Aharanov-Bohm flux

Abstract

We investigate the thermo-magnetic properties of the Attractive Radial Potential (ARP) for a particle moving in two-dimensional non-relativistic Schrödinger equation subjected to an external magnetic field and Aharonov-Bohm (AB) flux. Analytical solution for the energy eigenvalues and wavefunctions were obtained in a closed form via the Nikiforov-Uvarov Functional Analysis (NUFA) method. We derived the partition function by analyzing the system as a canonical ensemble to obtain the expressions for the thermodynamic quantities which include the free energy, entropy, specific heat capacity and internal energy. Our results show a decrease in the energy spectrum when the AB flux and magnetic fields are increased. At low temperatures, specific heat capacity shows a peak anomaly, while Helmholtz free energy and entropy exhibit temperature dependence. We also observed that AB flux and magnetic field influence both magnetization and magnetic susceptibility and exhibit both paramagnetic and diamagnetic behavior. The findings provide valuable insights into in molecular physics applications.

Dimensions

Abu-Shady, M. & Fath-Allah, H. M. (2023). The parametric generalized fractional Nikiforov-Uvarov method and its applications. Eastern European Journal of Physics. 3, 248–262. DOI: https://doi.org/10.26565/2312-4334-2023-3-22

Bayrak, O., Boztosun I and Ciftci, H. (2007). Exact Analytical Solutions to the Kratzer Potential by the Asymptotic Iteration Method,” International Journal of Quantum Che- mistry, Vol. 107, No. 3, pp. 540-544. https://doi.org/10.1002/qua.21141 DOI: https://doi.org/10.1002/qua.21141

Çiftçi, H., Hall,R. L and Saad, N. (2005). Iterative solutions to the Dirac equation, Physics. Letter A 340, 388 DOI: https://doi.org/10.1103/PhysRevA.72.022101

Dirac, P. A. The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1958). DOI: https://doi.org/10.1063/1.3062610

Dong, S. H., Factorization method in quantum mechanics (Springer, Netherlands, 2007) DOI: https://doi.org/10.1007/978-1-4020-5796-0

Edet, C.O., Amadi, P.O., Okorie, U.S., Tas, A., Ikot, A.N and Rampho, G. d (2020). Solutions of Schrodinger equation and thermal properties of generalized trigonometric Poschl-Teller potential, Revista Mexicana de Fısica 66 (6) 824–839 https://doi.org/10.31349/RevMexFis.65.333 DOI: https://doi.org/10.31349/RevMexFis.66.824

Edet, C.O., Okoi, P. O., Yusuf, A. S., Ushie,P. O and Amadi, P. O (2020). Thermal properties and magnetic susceptibility of hellmann potential in Aharonov-Bohm (AB) flux and magnetic f ields at zero and finite temperatures. Indian Journal of Physics https://doi.org/10.1007/s12648-019-01650-0 DOI: https://doi.org/10.1007/s10909-020-02533-z

Elsaid, M.K., Shaer, A., Hjaz, E. and Yahya, M.H. (2020) Impurity Effects on the Magnetization and Magnetic Susceptibility of an Electron Confined in a Quantum Ring under the Presence of an External Magnetic Field. Chinese Journal of Physics, 64, 9-17. https://doi.org/10.1016/j.cjph.2020.01.002 DOI: https://doi.org/10.1016/j.cjph.2020.01.002

Eshghi, M and Hamzavi, M. (2012). Spin Symmetry in Dirac-Attractive Radial Problem and Tensor Potential, Communication in theoretical physics, 57, 355 https://doi.org/10.1088/0253-6102/57/3/05 DOI: https://doi.org/10.1088/0253-6102/57/3/05

Eshghi, M., Mehraban, H and Ikhdair, S. M. (2017). Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields, Chinese Physics B 26, 060302 DOI: https://doi.org/10.1088/1674-1056/26/6/060302

Falaye, B. J., Sun, G. H., Ortigoz, R. S and Dong, S.H. (2016). Hydrogen atom in a Laser-Plasma, Physics Review E 93, 053201

Greene, R. L & Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential Physical Review A 14, 2363 https://doi.org/10.1103/PhysRevA.14.2363 DOI: https://doi.org/10.1103/PhysRevA.14.2363

Greiner, W. Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000). DOI: https://doi.org/10.1007/978-3-662-04275-5

Ikhdair, S. M and Falaye, B. J. (2014). Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction, The European Physical Journal Plus, 129. DOI: https://doi.org/10.1140/epjp/i2014-14001-y

Ikot, A. N., Edet, C. O., Amadi, P. O., Okorie, U.S., Rampho, G. J., and Abdullah, H. Y. (2020). Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential, European Physical Journal D 74 159 https://doi.org/10.1140/epjd/e2020-10084-9 DOI: https://doi.org/10.1140/epjd/e2020-10084-9

Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J. and Sever, R. The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A New Approach for Solving Exponential-Type Potentials, Few-Body System. 62, 9 (2021) DOI: https://doi.org/10.1007/s00601-021-01593-5

Ikot, A.N., Rampho, G.J., Amadi, P.O., Sithole, M. J., Okorie, U.S and . Lekala, M. I. (2020). Theoretic quantum information entropies for the generalized hyperbolic potential, Quantum Chemestry, 120, 24 e26410 https://doi.org/10.1002/qua.26410 DOI: https://doi.org/10.1002/qua.26410

Karayer, H. (2020). Study of the radial Schrödinger equation with external magnetic and AB flux fields by the extended Nikiforov–Uvarov method, European Physical Journal Plus 135, 70 DOI: https://doi.org/10.1140/epjp/s13360-020-00131-2

Karayer, H., Demirhan, D and Buyukkukih, F. (2015). Extension of Nikiforov-Uvarov method for the solution of Heun equation, Journal of Mathematical Physics, 56, 06350 DOI: https://doi.org/10.1063/1.4922601

Khordad, R. & Mirhosseini, B. (2015). Application of Tietz potential to study optical properties of spherical quantum dots. Pramana Journal of Physics, 85, 723–737 DOI: https://doi.org/10.1007/s12043-014-0906-3

Koscik, P and Okopinska, A. (2007). Quasi-exact solutions for two interacting electrons in two-dimensional anisotropic dots, Journal of Physics A: Mathematical. Theory, 40 1045 (quant-ph/0607176). DOI: https://doi.org/10.1088/1751-8113/40/5/012

Landau, L. D. E. & Lifshitz, M. Quantum Mechanics, Non- Relativistic Theory (Pergamon, New York, 1977).

Louis, H., Iserom, I. B., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Magu, T. O., Amos, P. I.& Edet, C. O. (2018). I-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism, Oriental Journal of Physical Science. 03,(1) 03-09 DOI: https://doi.org/10.13005/OJPS03.01.02

Nikiforov, A. F and Uvarov, V. B. Special functions of mathematical physics (Birkhauser, Basel, 1988) DOI: https://doi.org/10.1007/978-1-4757-1595-8

Okorie, U. S.; Ikot, A. N.; Onate, C. A.; Onyeaju, M. C.; Rampho, G. J. (2021). Bound and scattering states solutions of the Klein-Gordon equation with the attractive radial potential in higher dimensions, Modern Physics Letter A 36, No. 32, Article ID 2150230, 15 p. DOI: https://doi.org/10.1142/S0217732321502308

Okorie, U.S., Ikot, A.N and Chukwuocha, E. O. (2019). The Statistical Properties of The Varshni Potential Model Using Modified Factorization Method, Scientia Africana, Vol. 18 (No. 3), Pp 47-60

Okorie, U.S., Edet, C.O., Ikot, A.N., Rampho G. J. and Sever, R. (2020). Thermal Properties of Deng-Fan-Eckart Potential model using Poisson Summation Approach, Journal of Mathematical Chemistry. 58, 989 https://doi.org/10.1007/s10910-020-01107-4 DOI: https://doi.org/10.1007/s10910-020-01107-4

Pekeris, C. L. (1934). The Rotation-Vibration Coupling in Diatomic Molecules Physical Review. 45, 98 https://doi.org/10.1103/PhysRev.45.98 DOI: https://doi.org/10.1103/PhysRev.45.98

Qiang, W. C and Dong, S. H. (2010). Proper quantization rule, Europhysics Letters. 89, 10003. https://doi.org/10.1209/0295-5075/89/10003 DOI: https://doi.org/10.1209/0295-5075/89/10003

Schiff, L. I. Quantum Mechanics (McGraw Hill, New York, 1995).

Serrano, F. A., Xiao-Yan G., & Shi-Hai D. (2010). Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems. Journal of Mathematical Physics 51, 8, 082103 DOI: https://doi.org/10.1063/1.3466802

Serrano, F. A., Cruz-Irisson, M and Dong, S. H. (2011). Proper quantization rule as a good candidate to semiclassical quantization rules, Annalen der Physik, 523, 771-782 DOI: https://doi.org/10.1002/andp.201000144

Servatkhah, M., Khordad, R., Firoozi, A., Rastegar Sedehi, H. R. & Mohammadi, A. (2020). Low temperature behavior of entropy and specific heat of a three dimensional quantum wire: Shannon and Tsallis entropies. European Physical Journal B 93, 1–7 DOI: https://doi.org/10.1140/epjb/e2020-10034-5

Servatkhah, M., Khordad, R and Ghanbari, A. (2020). Accurate Prediction of Thermodynamic Functions of H2 and LiH Using Theoretical Calculations, International Journal of Thermophysics. 41, 37 DOI: https://doi.org/10.1007/s10765-020-2615-0

Williams, B. W and Poulios, D. P. (1993). A simple method for generating exactly solvable quantum mechanical potentials, European Journal of Physics, 14, 222 https://doi.org/10.1088/0143-0807/14/5/006 DOI: https://doi.org/10.1088/0143-0807/14/5/006

Published

2025-12-31

How to Cite

Thermo-Magnetic properties of Two-Dimensional Non-Relativistic  Schrödinger Equation for the Attractive Radial Potential under External Magnetic and Aharonov-Bohm Flux Fields. (2025). Nigerian Journal of Theoretical and Environmental Physics, 3(4), 45-60. https://doi.org/10.62292/njtep.v3i4.2025.102

How to Cite

Thermo-Magnetic properties of Two-Dimensional Non-Relativistic  Schrödinger Equation for the Attractive Radial Potential under External Magnetic and Aharonov-Bohm Flux Fields. (2025). Nigerian Journal of Theoretical and Environmental Physics, 3(4), 45-60. https://doi.org/10.62292/njtep.v3i4.2025.102