Spatial and Probabilistic Assessment of Radiation and Cancer Risk in Nigerian Seaports

Authors

  • O. Egagifo
    Federal University of Petroleum Resources, Effurun
  • Destiny Orute
    Federal University of Petroleum Resources, Effurun
  • O. Oyovwevotu
    Federal University of Petroleum Resources, Effurun
  • A. Teghware
    Federal University of Petroleum Resources, Effurun
  • E. Agbalagba
    Federal University of Petroleum Resources, Effurun

Keywords:

Background ionizing radiation, Seaports, Excess lifetime cancer risk, Monte Carlo simulation, Spatial mapping, Public dose assessment

Abstract

Background ionizing radiation (BIR) in seaport environments contributes to public radiological exposure, yet few studies have quantified this risk in Nigerian ports. This study assessed BIR, annual effective dose equivalent (AEDE), and excess lifetime cancer risk (ELCR) across Warri, Koko, and Burutu seaports. Field measurements were collected at 15, 10, and 7 locations per port, respectively. Descriptive analysis revealed mean BIR values of 0.010 ± 0.002 µSvh⁻¹ (Warri), 0.009 ± 0.001 µSvh⁻¹ (Koko), and 0.012 ± 0.002 µSvh⁻¹ (Burutu), with corresponding AEDE estimates well below the 1 mSvy⁻¹ public exposure limit. Mean ELCR values ranged from 0.206 × 10⁻³ (Koko) to 0.251 × 10⁻³ (Burutu), approaching the UNSCEAR reference level of 0.29 × 10⁻³. Burutu exhibited the highest ELCR, likely due to localized sediment retention zones and port-specific operational features, despite its small size and limited infrastructure. Monte Carlo simulations incorporating instrument uncertainty confirmed the robustness of ELCR estimates, while spatial mapping highlighted micro-zonal hotspots consistent with measured values. Comparison with Onne Port indicated substantially lower ELCRs at the studied seaports, emphasizing the importance of site-specific risk assessments. These findings demonstrate that, although current exposures are within regulatory limits, continued monitoring is recommended, particularly in areas with elevated BIR. The study is limited by its single-season field measurements and small sample size, which may constrain broader generalization. Nonetheless, the combined spatial and probabilistic approach provides a robust baseline radiological data critical for environmental management and public health policy in Nigerian coastal ports.

Dimensions

Adedokun, M. B., Ibitoye, A. Z., Saghana, V., & Olusola, O. I. (2025). Assessment of radiological risks in using coastal sediments as building materials in Lagos, Nigeria. DISCOVER ENVIRONMENT, 3, Article 80. https://doi.org/10.1007/s44274-025-00265-z DOI: https://doi.org/10.1007/s44274-025-00265-z

Agbalagba, E. O., Avwiri, G. O., & Ononugbo, C. P. (2013). Activity concentration and radiological impact assessment of ²²⁶Ra, ²²⁸Ra and ⁴⁰K in drinking waters from OML 30, 58 and 61 oil fields and host communities in the Niger Delta region of Nigeria. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 116, 197–200. https://doi.org/10.1016/j.jenvrad.2012.08.017 DOI: https://doi.org/10.1016/j.jenvrad.2012.08.017

Azhdarpoor, A., Hoseini, M., Shahsavani, S., Shamsedini, N., & Gharehchahi, E. (2021). Assessment of excess lifetime cancer risk and risk of lung cancer due to exposure to radon in a Middle Eastern city in Iran. RADIATION MEDICINE AND PROTECTION, 2(1), 18–24. https://doi.org/10.1016/j.radmp.2021.07.002 DOI: https://doi.org/10.1016/j.radmp.2021.07.002

Avwiri, G. O., & Oghenevovwero, E. E. (2015). Survey of background ionization radiation level in Burutu L.G.A., coastal area of Delta State, Nigeria. JOURNAL OF APPLIED PHYSICAL SCIENCE INTERNATIONAL, 2(2), 72–78. https://ikprress.org/index.php/JAPSI/article/view/2870

Avwiri, G. O., Mgbemere, C. J., & Ononugbo, C. P. (2024). Evaluation of background ionizing radiation and its associated health hazards in Onne Port Complex, Port Harcourt. RESEARCH JOURNAL OF PURE SCIENCE AND TECHNOLOGY, 7(2), 1–9.

Badeenezhad, A., Soleimani, H., Shahsavani, S., Parseh, I., Mohammadpour, A., & Azadbakht, O. (2023). Comprehensive health risk analysis of heavy metal pollution using water quality indices and Monte Carlo simulation in R software. SCIENTIFIC REPORTS, 13, 15817. https://doi.org/10.1038/s41598-023-43161-3 DOI: https://doi.org/10.1038/s41598-023-43161-3

Biere, P. E., Emumejaye, K., Aluko, T. O., Nwaobia, A. G., Okeyode, I. C., & Mustapha, O. A. (2025). An evaluation of excess lifetime cancer risk from indoor and outdoor radiation exposure in Okutukutu Computer Village, Yenagoa, Bayelsa State, Nigeria: A Monte Carlo simulation approach. NIGERIAN JOURNAL OF THEORETICAL AND ENVIRONMENTAL PHYSICS, 3(1), 10–16. https://doi.org/10.62292/njtep.v3i1.2025.66 DOI: https://doi.org/10.62292/njtep.v3i1.2025.66

Chatzipapas, K. P., Papadimitroulas, P., Emfietzoglou, D., Kalospyros, S. A., Hada, M., Georgakilas, A. G., & Kagadis, G. C. (2020). Ionizing radiation and complex DNA damage: Quantifying the radiobiological damage using Monte Carlo simulations (Review). CANCERS, 12(4), 799. https://doi.org/10.3390/cancers12040799 DOI: https://doi.org/10.3390/cancers12040799

Eke, B. C., & Amakom, C. M. (2022). Radiological dose assessment due to the presence of NORMs in the top soil of the Imo State Polytechnic, Imo State, Nigeria. ENVIRONMENTAL HEALTH INSIGHTS, 16, 1–12. https://doi.org/10.1177/11786302221137219 DOI: https://doi.org/10.1177/11786302221137219

Esi, O. E., Avwiri, G. O., Sylvanus, O. A., & Onwudiwe, D. C. (2024). Radiometric survey of sediments and health risk assessments from the southern coastal area of Delta State, Nigeria. HELIYON, 10(5), e26805. https://doi.org/10.1016/j.heliyon.2024.e26805 DOI: https://doi.org/10.1016/j.heliyon.2024.e26805

Hao, Y., et al. (2024). A Monte Carlo simulation dataset of radiation field parameters for a simple nuclear facility scenario. SCIENTIFIC DATA. https://doi.org/10.1038/s41597-024-03799-8 DOI: https://doi.org/10.1038/s41597-024-03799-8

Harrison, J. D., Balonov, M., Bochud, F., Martin, C., Menzel, H.-G., Ortiz-Lopez, P., Smith-Bindman, R., Simmonds, J. R., & Wakeford, R. (2021). Use of dose quantities in radiological protection (ICRP Publication 147). ANNALS OF THE ICRP, 50(1), 9–82. https://doi.org/10.1177/0146645320911864 DOI: https://doi.org/10.1177/0146645320911864

International Commission on Radiological Protection (ICRP). (1991). 1990 RECOMMENDATIONS OF THE INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION (ICRP PUBLICATION 60). ANNALS OF THE ICRP, 21(1–3). https://doi.org/10.1016/0146-6453(91)90001-3

International Atomic Energy Agency. (2005). ENVIRONMENTAL AND SOURCE MONITORING FOR PURPOSES OF RADIATION PROTECTION (IAEA Safety Standards Series No. RS-G-1.8). Vienna: International Atomic Energy Agency. https://www.iaea.org/publications/7176/environmental-and-source-monitoring-for-purposes-of-radiation-protection

International Atomic Energy Agency. (2019). GUIDELINES ON SOIL AND VEGETATION SAMPLING FOR RADIOLOGICAL MONITORING (Technical Reports Series No. 486). Vienna: International Atomic Energy Agency. https://www.iaea.org/publications/12219/guidelines-on-soil-and-vegetation-sampling-for-radiological-monitoring

Isinkaye, M. O., & Ajiboye, O. A. (2022). Natural radioactivity in surface soil of urban settlements in Ekiti State, Nigeria: Implications for radiological health risks. ARABIAN JOURNAL OF GEOSCIENCES, 15, 557. https://doi.org/10.1007/s12517-022-09835-4 DOI: https://doi.org/10.1007/s12517-022-09835-4

Kalankesh, L. R., Mosaferi, M., Khajavian, N., Sarvari, B., & Zarei, A. (2024). Simulation of excess lifetime lung cancer risk due to indoor radon exposure in Eastern Iran—Monte Carlo simulation method. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 17(4), 101193. https://doi.org/10.1016/j.jrras.2024.101193 DOI: https://doi.org/10.1016/j.jrras.2024.101193

Kalospyros, S. A., Gika, V., Nikitaki, Z., Kalamara, A., Kyriakou, I., Emfietzoglou, D., Kokkoris, M., & Georgakilas, A. G. (2021). Monte Carlo simulation-based calculations of complex DNA damage for incidents of environmental ionizing radiation exposure. APPLIED SCIENCES, 11(19), 8985. https://doi.org/10.3390/app11198985 DOI: https://doi.org/10.3390/app11198985

Kotb, N. A., Abd El Ghany, M. S., & El-Sayed, A. A. (2023). Radiological assessment of different monazite grades after mechanical separation from black sand. SCIENTIFIC REPORTS, 13, 15389. https://doi.org/10.1038/s41598-023-42287-8 DOI: https://doi.org/10.1038/s41598-023-42287-8

Mbonu, C. C., & Ben, U. C. (2021). Assessment of radiation hazard indices due to natural radioactivity in soil samples from Orlu, Imo State, Nigeria. HELIYON, 7(8), e07812. https://doi.org/10.1016/j.heliyon.2021.e07812 DOI: https://doi.org/10.1016/j.heliyon.2021.e07812

Mtshawu, B., Bezuidenhout, J., & Kilel, K. K. (2023). Spatial autocorrelation and hotspot analysis of natural radionuclides to study sediment transport. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 264, 107207. https://doi.org/10.1016/j.jenvrad.2023.107207 DOI: https://doi.org/10.1016/j.jenvrad.2023.107207

Odelami, K. A., Oladipo, M. O. A., Onoja, M. A., Musa, Y., & Aremu, S. O. (2024). Assessment of radiological contamination due to gold mining in soil and food crops of Babban Tsauni, Gwagwalada, Nigeria. RADIATION PROTECTION DOSIMETRY, 200(20), 1961–1970. https://doi.org/10.1093/rpd/ncae207 DOI: https://doi.org/10.1093/rpd/ncae207

Okoduwa, A. K., & Amaechi, C. F. (2024). Spatial distribution of climate change variables (rainfall and temperature): Case study of Delta State, Nigeria [Preprint]. RESEARCH SQUARE. https://doi.org/10.21203/rs.3.rs-4202634/v1 DOI: https://doi.org/10.21203/rs.3.rs-4202634/v1

Omeje, M., Adewoyin, O. O., Joel, E. S., Ijeh, B. I., & Oha, I. A. (2020). Spatial distribution of gamma radiation dose rates from natural radionuclides and its radiological hazards in sediments along River Iju, Ogun State, Nigeria. METHODSX, 7, 101086. https://doi.org/10.1016/j.mex.2020.101086 DOI: https://doi.org/10.1016/j.mex.2020.101086

Ononugbo, C. P., & Anekwe, U. (2020). Background gamma radiation in Nigerian market environment. AMERICAN JOURNAL OF ENVIRONMENTAL SCIENCES, 16(3), 48–54. https://doi.org/10.3844/ajessp.2020.48.54 DOI: https://doi.org/10.3844/ajessp.2020.48.54

Orduvwe, T. A., Avwiri, G. O., & Oghenenyerhovwo, A. E. (2025). Radiological risk assessment among occupational health workers in selected radiological centres in Warri City, Nigeria. TRENDS IN SOCIAL SCIENCES, 1(1), 1–9. https://doi.org/10.21124/tss.2025.01.09 DOI: https://doi.org/10.21124/tss.2025.01.09

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2020). SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION: UNSCEAR 2020 REPORT TO THE GENERAL ASSEMBLY WITH SCIENTIFIC ANNEXES (VOLS. I–II). United Nations. https://www.unscear.org/unscear/en/publications/2020_2021.html

Boxplots of BIR values by Seaports

Published

2025-11-05

How to Cite

Spatial and Probabilistic Assessment of Radiation and Cancer Risk in Nigerian Seaports. (2025). Nigerian Journal of Theoretical and Environmental Physics, 3(3), 46-56. https://doi.org/10.62292/njtep.v3i3.2025.96

How to Cite

Spatial and Probabilistic Assessment of Radiation and Cancer Risk in Nigerian Seaports. (2025). Nigerian Journal of Theoretical and Environmental Physics, 3(3), 46-56. https://doi.org/10.62292/njtep.v3i3.2025.96