Determination of Thermodynamic Properties via Partition Function Approaches Derived from the Non-Relativistic Schrödinger Equation
DOI:
https://doi.org/10.62292/njtep.v3i2.2025.79Keywords:
Dimensionless Potential Parameter, Magnetisation, Magnetic Susceptibility, Partition Function, Specific Heat CapacityAbstract
A critical challenge in molecular thermodynamics is accurately predicting how variations in dimensionless potential parameters influence macroscopic properties such as magnetisation, specific heat capacity, and molecular vibrational entropy. Traditional approaches often fail to fully capture these dependencies, limiting their predictive accuracy. In this study, we address this gap by developing a rigorous framework based on partition function formulations derived directly from the non-relativistic Schrödinger equation. Our main aim is to investigate the impact of dimensionless potential parameters ( and ) and the temperature parameter (β) on energy spectrum and key thermodynamic and magnetic properties. We systematically compute the energy spectrum for a wide range of potential parameter values and analyse their effects on magnetisation, magnetic susceptibility, internal energy, free energy, entropy, and specific heat capacity. The findings reveal that energy spectrum exhibit strong dependence on these parameters, with generally reducing energy levels while enhances them. Magnetisation typically decreases with but increases with and higher temperatures, while magnetic susceptibility shows complex patterns of enhancement and suppression. Vibrational thermodynamic properties, including internal energy and free energy, also display significant variations tied to the interplay of potential parameters. This study provides a robust, first-principles-based method for understanding and predicting how microscopic potential parameters govern macroscopic thermodynamic behaviour, advancing the fundamental knowledge and practical capabilities of molecular thermodynamics
References
Abu-Shady, M., & Khokha, E. M. (2023). A precise estimation for vibrational energies of diatomic molecules using the improved Rosen–Morse potential. Scientific Reports, 13(1), 11578.
Ding, Y., & Wang, Z. Q. (2011). Bound states of nonlinear Schrödinger equations with magnetic fields. Annali di Matematica Pura ed Applicata, 190(3), 427-451.
Dong, S. H. (2000). Exact solutions of the two-dimensional Schrödinger equation with certain central potentials. International Journal of Theoretical Physics, 39, 1119-1128.
Edet, C. O., Amadi, P. O., Onyeaju, M. C., Okorie, U. S., Sever, R., Rampho, G. J., ... & Ikot, A. N. (2021). Thermal properties and magnetic susceptibility of Hellmann potential in Aharonov–Bohm (AB) flux and magnetic fields at zero and finite temperatures. Journal of Low Temperature Physics, 202, 83-105.
Ettah, E. (2021). The Schrödinger Equation with Deng-Fan-Eckart Potential (DFEP): Nikiforov-Uvarov-Functional Analysis (NUFA) Method. European Journal of Applied Physics, 3(5), 58-62.
Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2021). The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A new approach for solving exponential-type potentials. Few-Body Systems, 62, 1-16.
Jia, C. S., Diao, Y. F., Liu, X. J., Wang, P. Q., Liu, J. Y., & Zhang, G. D. (2012). Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. The Journal of chemical physics, 137(1).
Lublinsky, M., & Mulian, Y. (2017). High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution. Journal of High Energy Physics, 2017(5), 1-80.
Manga, P. J., Buteh, S. D., Maina, M., Amusat, R. O., Teru, P. B., Hashimu, M. U., & John, D. S. (2023). Solutions of Schrödinger equation based on Modified Exponential Screened Plus Yukawa Potential (MESPYP) within the frame of parametric Nikiforov-Uvarov method. Dutse Journal of Pure and Applied Sciences, 9(3b), 144-154.
Manga, P. J., Likta, E. W., & Teru, P. B. (2021). Comparative Study on Charged and Neutral Pion-Nucleon Coupling Constants Using Yukawa Potential Model. FUDMA JOURNAL OF SCIENCES, 5(4), 167-173.
Mulian, Y. (2025). The Magnus expansion for non-Hermitian Hamiltonians. arXiv preprint arXiv:2505.09559.
Onate, C., Okon, I. B., Onyeaju, M. C., & Antia, A. D. (2022). Approximate solutions of the Schrodinger Equation for a Momentum-Dependent potential. Journal of the Nigerian Society of Physical Sciences, 242-250.
Reiss, H. R. (1980). Effect of an intense electromagnetic field on a weakly bound system. Physical Review A, 22(5), 1786.
Umirzakov, I. (2019). Incorrectness of analytical solution of Schrodinger equation for diatomic molecule with shifted Tietz-Wei potential. arXiv preprint arXiv:1902.04977.