A DFT Approach on the Impact of Hydrostatic Pressure on the Structural, Mechanical, Lattice dynamics, and Optical Characteristics of the Cubic Perovskite RbTaO3
DOI:
https://doi.org/10.62292/njtep.v3i1.2025.71Keywords:
Half-Heusler, Band gap, Bulk modulus, Semiconductor, Dielectric function, Refractive indexAbstract
The structural, mechanical, electrical, lattice dynamic, and optical features of the cubic perovskite RbTaO3 beneath pressure (0150GPa) are scrutinized using ab-initio calculations established on the spin-polarized density functional theory (SP-DFT). In accordance with the lattice parameter-energy variation curve, the compound is none ferromagnetic nor non-magnetic. Mechanical stability criteria for cubic structures disclose that the material is both brittle and stable. In agreement with the Zener anisotropy factor data, the compound displays anisotropic performance between 0 and 40 GPa and isotropic performance above 40 GPa. It was also prominent to have a semiconductor character, as seen by the electrical band structures, and the band gap changed from an indirect one at 0 GPa to a direct one at 150 GPa as a consequence of pressure application. In view of this energy gap transition, RbTaO3 is a likely material for use in photovoltaic, optoelectronic, and photochemical devices. The appearance of negative frequencies in the material makes it dynamically unstable, as can be seen from the phonon dispersion curves. The fundamental optical functions were considered, including the extinction coefficient (), optical conductivity, (), reflectivity (), electron energy-loss spectrum (), absorption coefficient spectrum (), and refractive index (). The optical characteristic indicates that the visible-ultraviolet spectrum is where cubic RbTaO3 is active
References
Aigbekaen, E.E., and Ighrakpata, F. C. (2022). The First Principal Study Of The Structural, Electronic, Elastic, Vibrational And Thermal Properties Of Cscl Type-Ercu Alloy. AAN Journal of Sciences, Engineering & Technology Vol. 1, Issue 1, pp. 1-11.
Azzouz, L., Halit, M., Rera M. T., Khenata A. K., Singh, M., Obeid, M. H., Jappor R., and Wang X. (2019). Structural, electronic and optical properties of ABTe2 (A= Li, Na, K, Rb, Cs and B= Sc, Y, La): Insights from first-principles computations. Journal of Solid State Chemistry, 279, 120954.
Bakare, F. O., Babalola, M. I., and Iyorzor, B. E. (2017). The role of alloying elements on the structural, mechanical and thermodynamic properties of Al3X binary alloy system (X = Mg, Sc and Zr): first principle. Materials Research Express, 4(11), 116502.
Bouadjemi, B., Bentata, S., Abbad, A., & Benstaali, W. (2015). Ab-initio study of optoelectronic and magnetic properties of the orthorhombic NdMnO3 perovskite. Solid State Communications, 207, 9-15.
Boucetta, S. (2014). Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound. Journal of Magnesium and Alloys, 2 (1) 59-63. https://doi.org/10.1016/j.jma.2014.04.001
Butt, M. K., Yaseen, M., Ghaffar, A., & Zahid, M. (2020). First principle insight into the structural, optoelectronic, half metallic, and mechanical properties of cubic perovskite NdInO3. Arabian Journal for Science and Engineering, 45(6), 4967-4974.
Cheng, B. L., Su, B., Holmes, J. E., Button, T. W., Gabbay, M., & Fantozzi, G. (2002). Dielectric and mechanical losses in (Ba, Sr) TiO3 systems. Journal of electroceramics, 9(1), 17-23.
El Rhazouani, O., Zarhri, Z., Benyoussef, A., & El Kenz, A. (2016). Magnetic properties of the fully spin-polarized Sr 2CrOsO6 double perovskite: A Monte Carlo simulation. Physics Letters A, 380(13), 1241-1246.
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O. , Nardelli, M.B., Calandra, M. , Car, R., cavazzoni, C., Ceresoli, D., Cococcioni, M., and Colonna, N. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of physics: Condensed matter, 29(46), p.465901.
Hassan, M., Liaqat, M., & Mahmood, Q. (2021). Pressure dependence of electronic, optical and thermoelectric properties of RbTaO3 perovskite. Applied Physics A, 127(4), 1-8.
Hu, J. M., Huang, S. P., Xie, Z., Hu, H., & Cheng, W. D. (2007). First-principles study of the elastic and optical properties of the pseudocubic Si3 As4, Ge4 As4 and Sn3As4. Journal of Physics: Condensed Matter, 19(49), 496215.
Hussain, M. I., Khalil, R. A., Hussain, F., & Rana, A. M. (2021). DFTbased insight into the magnetic and thermoelectric characteristics of XTaO3 (X= Rb, Fr) ternary perovskite oxides for optoelectronic applications. International Journal of Energy Research, 45(2), 2753-2765.
Ilyas, A., Khan, S. A., Liaqat, K., & Usman, T. (2021). Investigation of the structural, electronic, magnetic, and optical properties of CsXO3 (X= Ge, Sn, Pb) perovskites: A first-principles calculations. Optik, 244, 167536.
Iyorzor, B. E., Babalola, M. I., Adetunji, B. I. and Bakare, F. O. (2018). Effect of Tellurium333 concentration on the sructural, electronic and mechanical properties of Beryllium Sulphide: DFT approach. Materials Research Express, 5(5), 056517.
Iyorzor,B.E., Babalola, M.I., and Aigbekaen,E.E. (2018). Ab initio Calculation of the Structural, Mechanical and Thermodynamic Properties of Beryllium Sulphides, BeS, J.Appl.Sci.Environ.Manage.,Vol.22(1), 41-46.
Jindal, S., Vasishth, A., Devi, S., & Anand, G. (2018). A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integrated Ferroelectrics, 186(1), 1-9.
Khandy, S. A., & Gupta, D. C. (2017). Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite. Materials Chemistry and Physics, 198, 380-385.
Lufaso, M. W., and Woodward, P. M. (2001). Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B: Structural Science, 57(6), 725-738.
Murtaza, G., Gupta, S. K., Seddik, T., Khenata, R., Alahmed, Z. A., Ahmed, R., Khachai H, Jha P. K. and Omran, S. B. (2014). Structural, electronic, optical and thermodynamic properties of cubic REGa3 (RE= Sc or Lu) compounds: Ab initio study. Journal of alloys and compounds, 597, 36-44.
Okunzuwa, I. S., and Aigbekaen, E.E. (2021). Structural Optimization, Electronic Band Structure, Mechanical and Thermodynamics Properties of Fe3 Al. Physical Science International (JournalArticle no.PSIJ.67620) 25(2): 1-11.
Okunzuwa, S., and Aigbekaen, E. (2020). Structural Optimization and the Study of the Electronic, Mechanical, Thermodynamic and Phonon Properties of Mg2Sn from First Principle. Physical Science International (JournalArticle no.PSIJ.67620) 24(12): 60-71.
Perdew, J.P., Burke, K., and Ernzerhof, M. (1996 ). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868.
Perdew, J.P., Burke, K., and Ernzerhof, M. (1997). Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396.
Pithan, C., Hennings, D., & Waser, R. (2005). Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. International Journal of Applied Ceramic Technology, 2(1), 1-14.
Pugh, S.F. (1954). Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 45, 823-843
Raveau, B., Maignan, A., Martin, C., & Hervieu, M. (1998). Colossal magnetoresistance manganite perovskites: relations between crystal chemistry and properties. Chemistry of materials, 10(10), 2641-2652.
Reshak, A. H. (2016). Transport properties of the n-type SrTiO3/LaAlO3 interface. RSC Advances, 6(95), 92887-92895.
Sarwan, M., Shukla, P., & Singh, S. (2020). Structural stability, electronic and elastic properties of cubic RbTaO3 perovskite oxide. In AIP Conference Proceedings (Vol. 2265, No. 1, p. 030341). AIP Publishing LLC.
Schneemeyer, L. F., Waszczak, J. V., Zahorak, S. M., van Dover, R. B., & Siegrist, T. (1987). Superconductivity in rare earth cuprate perovskites. Materials research bulletin, 22(11), 1467-1473.
Sinko, G.V., and Smirnow, N.A. (2002). Ab initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure. Journal of Physics: Condensed Matter, 14, 6989-7005. https://doi.org/10.1088/0953-8984/14/29/301
Tahiri, O., Kassou, S., & Mrabet, R. (2018). First principles calculations of electronic and optical properties for mixed perovskites: Ba (1-x) Ca (x) TiO3 and Ba (1-x) Sr (x) TiO3 (x= 0.4, 0.6). Materials and Devices, 3, 2004-2018.
Tian, Z., Wang, X., Shu, L., Wang, T., Song, T. H., Gui, Z., & Li, L. (2009). Preparation of nano BaTiO3based ceramics for multilayer ceramic capacitor application by chemical coating method. Journal of the American Ceramic Society, 92(4), 830-833.
Tsurumi, T., Adachi, H., Kakemoto, H., Wada, S., Mizuno, Y., Chazono, H., & Kishi, H. (2002). Dielectric properties of BaTiO3-based ceramics under high electric field. Japanese journal ofapplied physics, 41(11S), 6929.
Wu, Z., Hao, X., Liu, X., and Meng, J. (2007). Structures and elastic properties of investigated via first-principles density functional calculations. Phys. Rev. B. 75(5), 054115.