Low Latitude Estimated Virtual Vertical Plasma Drifts Variation During Solar Minimum

Authors

  • O. E. Ehinlafa
  • Y. M. Liman
  • G. A. Àlàgbé
  • A. B. Abdulsalam
  • M. J. Johnson

DOI:

https://doi.org/10.62292/njtep.v2i2.2024.38

Keywords:

Virtual Vertical Plasma Drifts, Pre-noon peak, Post-noon peak, PRE, Low latitude

Abstract

Virtual vertical plasma drifts estimated from hourly virtual heights (h’F2) extracted from the digisonde found on GIRO’s website are used in this recent study by engaging the international quiet days (IQDs) conditions. Virtual vertical plasma drifts () estimated from low latitude F2-region virtual heights was examined over Ilorin (lat. 8.31°N, long. 4.34°E, dip lat. 2.95o) during solar minimum (SM), a station Located along the latitudinal hollow. The 10-international quiet days (IQDs) monthly averages across each hourly period of the day were used for the estimation. Two characteristics of  highlighted are the pre-noon and the post-noon peaks of the diurnal patterns for each season. The  pre-noon peaks magnitudes between 0800 LT and 0900 LT are 6.8, 14.4 and 15.0 m/s for June Solstice, Equinox and December Solstice respectively; and its post-noon peaks magnitudes around 1800 LT evening time are 0.8, 7.4 and 7.9 m/s foe December and June Solstices, and Equinox respectively.  displayed an enhanced phenomenon of slight-transitory spikes having magnitudes of -0.3 m/s (December Solstice) and -0.8 m/s (Equinox), and 3.6 m/s (June Solstice) around 1200 LT noontime. Finally,  depicted pre-reversal enhancement (PRE) night peaks for the entire season. The PRE peaks magnitudes are [(-4.0)–(-13.4)] m/s at 2000 LT, [(-4.9)–(-9.3)] m/s between 2200 LT and 2300 LT, [(-3.6)–(-6.6)] m/s between 0100 LT and 0200 LT and [(-3.0)–(-6.4)] m/s between 0300 LT and 0400 LT respectively for all seasons. Same phenomenon in the  annual pattern as showcased in the  diurnal patterns occurred. In general,  magnitudes were highest in Solstices and lowest in Equinox during solar minimum. The  gradually and continuous decay is ensued by the electrons hastily turnoff movement from the low latitude due to solar ionization for all seasons

References

Abdu, M.A., Batista, I.S., Reinisch, B.W., Carrasco, A.J. (2004). Equatorial F-layer height, evening pre-reversal electric field, and night E-layer density in the American sector: IRI validation with observations. Adv. Space Res. 34, 1953–1965.

Adebesin, B.O., Adeniyi, J.O., Adimula, I.A., Oladipo, O.A., Olawepo, A.O., Reinisch, B.W. (2015). Comparative analysis of nocturnal vertical plasma drift velocities inferred from ground-based ionosonde measurements of hmF2 and h′F. J. Atmos. Sol. Terr. Phys. 122, 97–107, http://dx.doi.org/10.1016/j.jastp.2014.11.007.

Adeniyi, J.O., Adebesin, B.O., Adimula, I.A., Oladipo, O.A., Olawepo, A.O., Ikubanni, S.O., Reinisch, B.W. (2014a). Comparison between African equatorial station ground-based inferred vertical E × B drift, Jicamarca direct measured drift, and IRI model. Adv. Space Res. 54, 1629–1641, http://dx.doi.org/10.1016/j.asr.2014.06.014

Adeniyi, J.O., Adimula, I.A., Adebesin, B.O., Reinisch, B.W., Oladipo, O.A., Olawepo, A.O., Yumoto, K. (2014b). Quantifying the EEJ current with ground-based ionosonde inferred vertical E × B drifts in the morning hours over Ilorin, West Africa. Acta Geophys. 62 (3), 656– 678. http://dx.doi.org/10.2478/s11600-014-0202-0.

Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., Kudeki, E. (2002). Estimating daytime vertical E × B drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys. Res. Lett. 29 (12). http://dx.doi.org/10.1029/2001GL014562 , 37-1–37-4.

Araujo-Pradere, A. Eduardo, Anderson, David N., Fedrizzi, Mariangel, Stoneback, Russell (2010). Quantifying the day-time, equatorial E × B drift velocities at the boundaries of the 4-cell tidal structure using C/ NOFS’ CINDI observations. In: Doherty, P., Herandez-Pajares, M., Juan, J.M., Sanz, J., Aragon-Angel, A. (Eds.), The International Beacon Satellite Symposium BSS2010, Campus Nord UPC, Barcelona.

Batista, I.S., de Medeiros, R., Abdu, M., de Souza, J., Bailey, G., de Paula, E. (1996). Equatorial ionospheric vertical plasma drift model over the Brazilian region. J. Geophys. Res. 101 (A5), 10887–10892.

Bertoni, F., Batista, I.S., Abdu, M.A., Reinisch, B.W., Kherani, E.A. (2006). A comparison of ionospheric vertical drift velocities measured by digisonde and Incoherent scater radar at the magnetic equator. J. Atmos. Sol. Terr. Phys. 68 (6), 669–678. http://dx.doi.org/10.1016/j.jastp.2006.01.002 .

Bittencourt, J.A., Abdu, M.A. (1981). A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region. Journal Geophysical Research, 86, 2451–2454.

Dabas, R.S., Singh, L., Lakshimi, D.R., Subramanyam, P., Chopra, P., Garg, S.C. (2003). Evolution and dynamics of equatorial plasma bubbles: relationship to E × B drift, post-sunset total electron content enhancements, and EEJ strength. Radio Sci. 38, 1075. http://dx.doi.org/10.1029/2001RS002586 .

Eccles, J.V. (1998). A modelling investigation of the evening pre-reversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 103, 26709–26719.

Ehinlafa, O. E, Àlàgbé, G. A, Onanuga, O. K., Adeniyi, J. O. (2023). Low Latitude Ionospheric foF2 Variability and F2-Region Virtual Height Response During Low Solar Activity. Nig. Jour. of Physics, 32(2), 105 – 111.

Fejer, B.G., Jesen, J.W., Su, S. (2008). Quiet time equatorial F-region vertical plasma drift model derived from ROCSAT-1 observations. J. Geophys. Res. 113, A05304. http://dx.doi.org/10.1029/2007JA012801.

Fejer, B.G. (1997). The electrodynamics of the low latitude ionosphere recent results and future challenges; J. Atmos. Sol. Terr. Phys. 59, 1465–1482.

Fejer, B.G., de Paula, E.R., Heelis, R.A., Hanson, W.B. (1995). Global equatorial ionosphere vertical plasma drifts measured by the AE-E Satellite; J. Geophys. Res. 100, 5769–5776.

Fejer, B.G., de Paula, E.R., Gonzales, S.A., Woodman, R.F. (1991). Average vertical and zonal F-region plasma drifts over Jicamarca. J. Geophys. Res. 96, 13901–13906.

Fesen, C., Crowley, G., Roble, R., Richmond, A., Fejer, B.G. (2000). Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophysical Research Letters 27 (13), 1851–1854.

Huang, X., Reinisch, B.W. (1996). Vertical electron density profiles from the digisonde ionograms: the average representative profile. Ann. Geophys. XXXIX (4), 751–756.

Kelley, M.C., Ilma, R.R., Crowley, G. (2009). On the origin of pre-reversal enhancement of the zonal equatorial electric field. Ann. Geophys. 27, 2053–2056.

Kelley, M.C. (1989). The earth’s ionosphere: plasma physics and electrodynamics. International Geophysics Series, vol. 43. Academic, San Diego, CA

Kil, H., Heelis, R.A., Paxton, L.J., Oh, S.-J. (2009). Formation of a plasma depletion shell in the equatorial ionosphere. J. Geophys. Res. 114 (A11), 1–7. http://dx.doi.org/10.1029/2009JA014369 .

Lee, C.C., Liu, J.Y., Reinisch, B.W., Chen, W.S., Chu, F.D. (2005). The effects of the pre-reversal drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Ann. Geophys. 23, 745–751.

Liu, L., Wan, W., Chen, Y., Le, H. (2011). Solar activity effects of the ionosphere: a brief review. Chin. Sci. Bull. 56 (12), 1202–1211. http://dx.doi.org/10.1007/s11434-010-4226-9 .

Liu, L., Luan, X., Wan, W., Lei, J., Ning, B. (2004). Solar activity variations of equivalent winds derived from global ionosonde data. J. Geophys. Res. 109, A12305. http://dx.doi.org/10.1029/2004JA010574.

Luhr, H., Rother, M., Hausler, K., Alken, P., Maus, S. (2008). The influence of non-migrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. 113 (A08313). http://dx.doi.org/10.1029/2008JA013064 .

Obrou, O.K., Bilitza, D., Adeniyi, J.O., Radicella, S.M. (2003). Equatorial F2-layer peak height and correlation with vertical ion drift and M(3000)F2. Adv. Space Res. 31 (3), 513–520.

Oyekola, O.S., Kolawole, L.B. (2010). Equatorial vertical E × B drift velocities inferred from ionosonde measurements over Ouagadougou and the IRI-2007 vertical ion drift model. Adv. Space Res. 46 (5), 604– 612.

Oyekola, O. S. (2009a). Equatorial F-region vertical ion drifts during quiet solar maximum. Adv. Space Res. 43, 1950–1956.

Oyekola, O.S. (2009b). A study of evolution/suppression parameters of equatorial post-sunset plasma instability. Ann. Geophys. 27, 1–5.

Oyekola, O.S., Oluwafemi, C.O. (2008). Solar and geomagnetic trends of equatorial evening and nighttime F region vertical ion drift. J. Geophys. Res. 113, A12318.

Oyekola, O.S. and Oluwafemi, C.O. (2007). Morphology of F-region vertical E × B drifts in the African sector using ionosonde measurements. Ann. Geophys. 50 (5), 615–625.

Oyekola, O.S., Ojo, A. (2006). Nocturnal variations of F-region vertical ionization velocities near the magnetic equator. Indian J. Radio Space Phys. 35, 227–233.

Radicella, S.M., Adeniyi, J.O. (1999). Equatorial ionospheric electron density below the F2 peak. Radio Science, 34(5), 1153- 1163.

Reinisch, B.W., Huang, X., Galkin, I.A., Paznukhov, V., Kozlov, A., Nsumei, P., Khmyrov, G. (2005). Recent advances in real time analysis of ionograms and ionospheric drift measurements with digisondes. Submitted to IES Proceedings, 12 April.

Reinisch, B.W., Scali, J.L., Haines, D.M. (1998). Ionospheric drift measurements with ionosondes. Annal Geophysicae, 41(5–6), 695–702.

Richmond, A.D., Blanc, M., Emery, B.A., Wand, R.H., Fejer, B.G., Woodman, R.F., Ganguly, S., Amayenc, P., Behnke, R.A., Calderon, C., Evans, J.V. (1980). An empirical model of quiet-day ionospheric electric fields at middle and low latitudes. J. Geophys. Res. 85, 4658

Sastri, J.H. (1996). Longitudinal dependence of equatorial F region vertical plasma drifts in the dusk sector. J. Geophys. Res. 101 (A2), 2445–2452.

Scherliess, L., Fejer, B.G. (1999). Radar and satellite global equatorial F-region vertical drift model. J. Geophys. Res. 104, 6829–6842.

Uemoto, J., Maruyama, T., Saito, S., Ishii, M., Yushimura, R. (2010). Relationship between pre-sunset electrojet strength, PRE and ESF onset. Ann. Geophys. 28, 449–454.

wdc, kugi-kyoto (2020): Tabulated IQD and IDD data, (https://wdc.kugi.kyoto-u.ac.jp/qddays/index.html), Japan.

Downloads

Published

2024-06-30