Ionospheric Virtual Height (h′F2) Response and its Vertical Ion Drifts Characteristics at an Equatorial Station

Authors

  • O. E. Ehinlafa
  • F. H. Abejide
  • O. K. Onanuga
  • K. S. Oyeleke
  • J. S. Ademola

DOI:

https://doi.org/10.62292/njtep.v2i2.2024.36

Keywords:

Virtual Heights, Ion Drift, Pre-noon peak, Noontime peak, Post-Sunset peak, Pre-Sunrise peak

Abstract

The Ionospheric virtual heights (hF2) obtained from the DPS-4.2 Version of the GIRO’s site, as a computing parameter for vertical E × B ion drifts in this present study using the international quiet days (IQDs) is engaged. Vertical ion drifts () computed from virtual heights was studied over Ilorin (lat. 8.31°N, long. 4.34°E, dip lat. 2.95o) during a solar minimum (SM), a station situated at the equatorial dip. The hourly averages of vertical ion drifts,  were computed from 10-international quiet days (IQDs) hourly hF2 averages for the four seasonal months adopted. Seasonally,  was having same behavourial patterns of pre-noon and post-noon peaks, but in hF2, it had noontime, post-sunset and pre-sunrise peaks occurred in all seasons. The  pre-noon peaks magnitudes are 6.8, 14.4 and 15.0 m/s in June Solsticial, Equinoctial and December Solsticial respectively; and its post-noon peaks magnitudes are 0.8, 7.4 and 7.9 m/s in December and June Solsticials, and Equinoctial seasons respectively. The hF2 noontime peaks magnitudes are (321–410) km, post-sunset peaks magnitudes are (253–329) km and pre-sunrise peaks magnitudes are (228–318) km in all seasons. Also,  depicted pre-reversal enhancement (PRE) night peaks in all seasons. The PRE peaks magnitudes are [(-4.0)–(-13.4)] m/s at 2000 LT, [(-4.9)–(-9.3)] m/s between 2200 LT and 2300 LT in all seasons. Similar phenomenal observations occurred in the hF2 and  annual patterns plots. In general, the hF2 and  magnitudes were greatest in Solsticial seasons and least in Equinoctial season. The hF2 and  stable and continual descent indicates generally that the electrons briskly drifting away from the equator triggered by solar ionization in the equatorial region. As well, seasonal peaks occurred in general are assumed to be controlled by the enhanced vertical E × B ion drifts upsurge, which adapts with former aftermaths at some stations in the West African sector during closely related solar activity

References

Abdu, M.A., Batista, I.S., Reinisch, B.W., Carrasco, A.J. (2004). Equatorial F-layer height, evening pre-reversal electric field, and night E-layer density in the American sector: IRI validation with observations. Adv. Space Res. 34, 1953–1965.

Adebesin, B.O., Adeniyi, J.O., Adimula, I.A., Oladipo, O.A., Olawepo, A.O., Reinisch, B.W. (2015). Comparative analysis of nocturnal vertical plasma drift velocities inferred from ground-based ionosonde measurements of hmF2 and h′F. J. Atmos. Sol. Terr. Phys. 122, 97–107, http://dx.doi.org/10.1016/j.jastp.2014.11.007.

Adeniyi, J.O., Adebesin, B.O., Adimula, I.A., Oladipo, O.A., Olawepo, A.O., Ikubanni, S.O., Reinisch, B.W. (2014a). Comparison between African equatorial station ground-based inferred vertical E × B drift, Jicamarca direct measured drift, and IRI model. Adv. Space Res. 54, 1629–1641, http://dx.doi.org/10.1016/j.asr.2014.06.014

Adeniyi, J.O., Adimula, I.A., Adebesin, B.O., Reinisch, B.W., Oladipo, O.A., Olawepo, A.O., Yumoto, K. (2014b). Quantifying the EEJ current with ground-based ionosonde inferred vertical E × B drifts in the morning hours over Ilorin, West Africa. Acta Geophys. 62 (3), 656– 678. http://dx.doi.org/10.2478/s11600-014-0202-0.

Araujo-Pradere, A. Eduardo, Anderson, David N., Fedrizzi, Mariangel, Stoneback, Russell (2010). Quantifying the day-time, equatorial E × B drift velocities at the boundaries of the 4-cell tidal structure using C/ NOFS’ CINDI observations. In: Doherty, P., Herandez-Pajares, M., Juan, J.M., Sanz, J., Aragon-Angel, A. (Eds.), The International Beacon Satellite Symposium BSS2010, Campus Nord UPC, Barcelona.

Bai, H., Feng, F., Wang, J. (2020). A Combination Prediction Model of Long-Term Ionospheric foF2 Based on Entropy Weight Method. Entropy, 22, 442.

Batista, I.S., de Medeiros, R., Abdu, M., de Souza, J., Bailey, G., de Paula, E. (1996). Equatorial ionospheric vertical plasma drift model over the Brazilian region. Journal of Geophysical Research, 101(A5), 10887–10892.

Bittencourt, J.A., Abdu, M.A. (1981). A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region. Journal Geophysical Research, 86, 2451–2454.

Buonsanto, M.J., Witasse, O.G. (1999). An updated climatology of thermospheric neutral winds and F-region ion drifts above Millstone Hill. Journal Geophysical Research, 104, 24,675–24,687. http://dx.doi.org/10.1029/ 1999JA900345.

Chen, C.H., Liu, J.Y., Yumoto, K., Lin, C.H., Fang, T.W. (2008). Equatorial ionization anomaly of the total electron content and equatorial electrojet of ground-based geomagnetic field strength. Journal of Atmosphere and Solar Terrestrial Physics, 70, 2172–2183.

Dabas, R.S., Singh, L., Lakshimi, D.R., Subramanyam, P., Chopra, P., Garg, S.C. (2003). Evolution and dynamics of equatorial plasma bubbles: relationship to E × B drift, post-sunset total electron content enhancements, and EEJ strength. Radio Sci. 38, 1075. http:// dx.doi.org/10.1029/2001RS002586.

Ehinlafa, O. E, Àlàgbé, G. A, Onanuga, O. K., Adeniyi, J. O. (2023). Low Latitude Ionospheric foF2 Variability and F2-Region Virtual Height Response During Low Solar Activity. Nigeria Journal of Physics, 32(2), 105 – 111.

Fejer, B.G., Jesen, J.W. and Su, S. (2008). Quiet time equatorial F-region vertical plasma drift model derived from ROCSAT-1 observations. Journal of Geophysical Research, 113, A05304. http://dx.doi.org/10.1029/2007JA012801.

Fejer, B.G. (1997). The electrodynamics of the low latitude ionosphere recent results and future challenges. Journal of Atmosphere and Solar Terrestrial Physics, 59, 1465–1482.

Fejer, B.G., de Paula, E.R., Heelis, R.A., Hanson, W.B. (1995). Global equatorial ionosphere vertical plasma drifts measured by the AE-E Satellite. Journal of Geophysical Research, 100, 5769–5776.

Fejer, B.G., de Paula, E.R., Gonzales, S.A., Woodman, R.F. (1991). Average vertical and zonal F-region plasma drifts over Jicamarca. Journal of Geophysical Research, 96, 13901–13906.

Huang, X., Reinisch, B.W. (1996). Vertical electron density profiles from the digisonde ionograms: the average representative profile. Annal Geophysicae, XXXIX(4), 751–756.

Kelley, M.C., Ilma, R.R., Crowley, G. (2009). On the origin of pre-reversal enhancement of the zonal equatorial electric field. Annal Geophysicae 27, 2053–2056.

Kil, H., Heelis, R.A., Paxton, L.J., Oh, S.-J. (2009). Formation of a plasma depletion shell in the equatorial ionosphere. Journal of Geophysical Research, 114(A11), 1–7. http://dx.doi.org/10.1029/2009JA014369.

Lee, C.C., Liu, J.Y., Reinisch, B.W., Chen, W.S., Chu, F.D. (2005). The effects of the pre-reversal drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Annal Geophysicae, 23, 745–751.

Liu, L., Wan, W., Chen, Y., Le, H. (2011). Solar activity effects of the ionosphere: a brief review. China Scientific Bullettin 56 (12), 1202–1211. http:// dx.doi.org/10.1007/s11434-010-4226-9.

Liu, L., Luan, X., Wan, W., Lei, J., Ning, B. (2004). Solar activity variations of equivalent winds derived from global ionosonde data. Journal of Geophysical Research, 109, A12305. http://dx.doi.org/10.1029/2004JA010574.

Luhr, H., Rother, M., Hausler, K., Alken, P., Maus, S. (2008). The influence of non-migrating tides on the longitudinal variation of the equatorial electrojet. Journal of Geophysical Research, 113(A08313). http://dx.doi.org/ 10.1029/2008JA013064.

Obrou, O.K., Bilitza, D., Adeniyi, J.O., Radicella, S.M. (2003). Equatorial F2-layer peak height and correlation with vertical ion drift and M(3000)F2. Adv. Space Res. 31 (3), 513–520.

Oyekola, O.S., Kolawole, L.B. (2010). Equatorial vertical E × B drift velocities inferred from ionosonde measurements over Ouagadougou and the IRI-2007 vertical ion drift model. Adv. Space Res. 46 (5), 604– 612.

Oyekola, O. S. (2009). Equatorial F-region vertical ion drifts during quiet solar maximum. Adv. Space Res. 43, 1950–1956.

Oyekola, O.S., Oluwafemi, C.O. (2007). Morphology of F-region vertical E × B drifts in the African sector using ionosonde measurements. Ann. Geophys. 50 (5), 615–625.

Radicella, S.M., Adeniyi, J.O. (1999). Equatorial ionospheric electron density below the F2 peak. Radio Science, 34(5), 1153- 1163.

Reinisch, B.W., Huang, X., Galkin, I.A., Paznukhov, V., Kozlov, A., Nsumei, P., Khmyrov, G. (2005). Recent advances in real time analysis of ionograms and ionospheric drift measurements with digisondes. Submitted to IES Proceedings, 12 April.

Reinisch, B.W., Scali, J.L., Haines, D.M. (1998). Ionospheric drift measurements with ionosondes. Annal Geophysicae, 41(5–6), 695–702.

Richmond, A.D., Blanc, M., Emery, B.A., Wand, R.H., Fejer, B.G., Woodman, R.F., Ganguly, S., Amayenc, P., Behnke, R.A., Calderon, C., Evans, J.V. (1980). An empirical model of quiet-day ionospheric electric fields at middle and low latitudes. J. Geophys. Res. 85, 4658

Sastri, J.H. (1996). Longitudinal dependence of equatorial F region vertical plasma drifts in the dusk sector. Journal of Geophysical Research, 101(A2), 2445–2452.

Scherliess, L., Fejer, B.G. (1999). Radar and satellite global equatorial F-region vertical drift model. Journal of Geophysical Research, 104, 6829–6842.

wdc, kugi-kyoto (2020): Tabulated IQD and IDD data, (https://wdc.kugi.kyoto-u.ac.jp/qddays/index.html), Japan.

Woodman, R.F., Chau, J.L., Ilma, R.R. (2006). Comparison of ionosonde and incoherent scatter drift measurements at magnetic equator. Geophysical Research Letter, 33, L01103. http://dx.doi.org/10.1029/ 2005GL023692.

Downloads

Published

2024-06-30