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ABSTRACT 

We present a comprehensive mathematical framework for extended Generalized 

Uncertainty Principle (GUP) formulations and their systematic application to 

astrophysical systems. Through rigorous dimensional analysis and comparative 

evaluation of competing theoretical models, we establish a unified approach for 

incorporating quantum gravity effects into macroscopic astronomical 

observations. Our analysis reveals fundamental scaling relationships between 

microscopic quantum gravity parameters and observable astrophysical 

phenomena, providing the theoretical foundation for observational constraints on 

minimal length scales. The framework developed here offers a systematic 

methodology for translating Planck-scale physics into testable predictions for 

neutron star structure, black hole thermodynamics, and gravitational wave 

signatures. We demonstrate that while individual quantum gravity corrections 

appear negligible, their cumulative effects in extreme astrophysical environments 

can potentially reach observational thresholds, particularly in gravitational wave 

observations of binary neutron star mergers, where tidal deformability 

measurements offer unprecedented sensitivity to the underlying equation of state 

modifications. 

INTRODUCTION 

The quest to understand the fundamental structure of 

spacetime at the smallest conceivable scales has led 

theoretical physicists down increasingly abstract 

mathematical pathways, yet paradoxically, some of the 

most promising avenues for testing these ideas lie in the 

realm of the largest and most energetic objects in our 

universe. The Generalized Uncertainty Principle emerges 

from this intersection as perhaps one of the most elegant 

bridges between the quantum mechanical foundations of 

reality and the macroscopic phenomena we observe 

through our telescopes. 

Heisenberg’s original uncertainty principle, formulated 

in 1927, established the fundamental limit Δ𝑥 Δ𝑝  ≥ ℏ/2 

for position and momentum measurements. This 

relationship, while revolutionary in its implications for 

quantum mechanics, assumed that spacetime itself could 

be treated as a smooth, continuous background; an 

assumption that begins to break down as we approach the 

Planck scale, where quantum fluctuations of spacetime 

geometry become non-negligible. The recognition of this 

limitation has driven the development of various 

quantum gravity theories, each proposing modifications 

to the basic uncertainty relations (Maggiore, 1993; 

Tawfik & Diab, 2015). String theory, with its 

fundamental assumption that particles are extended one-

dimensional objects rather than point-like entities, 

naturally introduces a minimal length scale through the 

string length parameter 𝑙𝑠 = √α′ ≈ 𝑙Planck.This 

theoretical framework suggests that attempting to probe 

distances smaller than this fundamental length would 

require increasingly large energies, eventually leading to 

the creation of larger, rather than smaller, structures. a 

phenomenon that manifests mathematically as 

modifications to the standard uncertainty principle. The 

implications are profound: if there exists a minimal 

observable length in nature, then our traditional notions 

of spacetime continuity must be reconsidered at the most 

fundamental level (Amati et al., 1989; Gross & Mende, 

1988). 
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Loop Quantum Gravity approaches this same conceptual 

territory from an entirely different direction, quantizing 

spacetime itself rather than matter fields propagating 

through spacetime. The discrete spin network structures 

that emerge from this formalism naturally lead to a 

granular spacetime with characteristic length scales on 

the order of the Planck length. This discreteness 

manifests as modifications to the standard uncertainty 

relations, though the precise mathematical form of these 

modifications can differ significantly from those arising 

in string theory contexts (Ashtekar & Lewandowski, 

2004; Zhang, 2023). 

The mathematical formalization of these ideas through 

various GUP formulations has evolved considerably 

since the pioneering work of Kempf, Mangano, and 

Mann in the mid-1990s (Kempf et al., 1995). Their 

seminal contribution established the framework for 

incorporating minimal length effects into quantum 

mechanics through modified commutation relations. 

However, the intervening decades have witnessed an 

explosion of alternative formulations, each capturing 

different aspects of the underlying quantum gravity 

phenomenology and each making distinct predictions for 

observable consequences (Hossenfelder, 2013; Battista et 

al., 2024). 

What makes this theoretical landscape particularly 

compelling from an astrophysical perspective is that 

extreme astronomical environments, neutron star cores 

with densities exceeding nuclear saturation, black hole 

horizons where gravitational fields approach their 

theoretical limits, and the violent merger events that 

generate gravitational waves provide natural laboratories 

where quantum gravity effects might manifest in 

observable ways. The energy scales involved in these 

phenomena, while far below the Planck energy, can 

nevertheless probe the cumulative effects of quantum 

gravity modifications when integrated over macroscopic 

systems (Moussa, 2015; Parsamehr, 2025). 

The current observational renaissance in astronomy, 

driven by facilities like the Laser Interferometer 

Gravitational-Wave Observatory (LIGO), the Neutron 

Star Interior Composition Explorer (NICER), and the 

Event Horizon Telescope, has opened unprecedented 

windows into these extreme regimes. We possess the 

technological capability to test fundamental physics 

through astronomical observations with sufficient 

precision that quantum gravity effects, if they exist at the 

predicted levels, might become detectable 

(Chatziioannou et al., 2018; Brown, 2022). 

Yet translating between the abstract mathematical 

formulations of quantum gravity theories and concrete 

observational predictions remains a formidable 

challenge. The parameter spaces involved span dozens of 

orders of magnitude, the relevant physics involves 

complex many body quantum systems under extreme 

conditions, and the observational signatures are typically 

small corrections to well established classical 

phenomena. Success in this endeavor requires not just 

mathematical sophistication, but also physical intuition 

about which effects are likely to be most significant and 

which observational approaches offer the greatest 

sensitivity. 

This paper addresses these challenges by developing a 

systematic mathematical framework for extended GUP 

formulations and their astrophysical applications. Rather 

than focusing on any single theoretical approach, we 

adopt a phenomenological perspective that encompasses 

the range of modifications suggested by different 

quantum gravity theories. Our goal is to establish the 

mathematical machinery necessary for translating 

abstract theoretical parameters into concrete 

observational predictions, while simultaneously 

providing the analytical tools needed to compare and 

contrast the predictions of competing theoretical 

frameworks. 

 

MATERIALS AND METHODS 

Mathematical framework development 

The mathematical foundation of any GUP formulation 

rests on modified commutation relations that encode the 

fundamental discreteness of spacetime at the Planck 

scale. The standard canonical commutation relation 
[𝑥̂, 𝑝̂] = 𝑖, which underlies conventional quantum 

mechanics, must be generalized to incorporate the effects 

of quantum gravity. The most widely studied 

modification takes the form: 

[𝑥̂, 𝑝̂] = 𝑖ℏ(1 + 𝛽𝑝̂2 + 𝛾𝑥̂2 + 𝛿𝑥̂𝑝̂. . . ) (1) 

where the dimensionless parameters 𝛽, 𝛾 𝑎𝑛𝑑 𝛿 

characterize the strength of different quantum gravity 

corrections. The challenge lies in determining both the 

functional form of these corrections and the physical 

interpretation of the associated parameters 

The parameter 𝛽, which multiplies the momentum 

squared term, emerges naturally from string theory 

considerations where the fundamental string length 

provides a minimal distance scale. In this context, β ≈
(𝑙𝑠/𝑙Planck)2 ≈ 1 suggesting that quantum gravity effects 

should become significant when momentum 

uncertainties approach the Planck momentum. However, 

alternative theoretical frameworks can yield substantially 

different values for this parameter, reflecting the diverse 

ways in which different theories implement minimal 

length physics. 

To derive the modified uncertainty relation from these 

commutation relations, we employ the standard approach 

of considering the variance of position and momentum 

operators. For a general state |ψ⟩, the uncertainties are 

defined as: 

(Δ𝑥)2 = ⟨ψ|𝑥̂2|ψ⟩ − ⟨ψ|𝑥̂|ψ⟩2  (2) 

(Δ𝑝)2 = ⟨ψ|p̂2|ψ⟩ − ⟨ψ|𝑝̂|ψ⟩2  (3) 

The generalized uncertainty relation follows from the 

Schwarz inequality applied to the modified commutation 
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relations. For the simplest case where only the 𝛽 term is 

retained, 

this yields: 

∆𝑥∆𝑝 ≥
ℏ

2
[1 + 𝛽

(∆𝑝)2

ℏ2 ]   (4) 

This relation exhibits several remarkable features that 

warrant detailed examination. At low energies where 

∆𝑝 ≪ ℏ/√𝛽, reduces to the standard Heisenberg 

uncertainty principle. However, as momentum 

uncertainties increase, the right-hand side grows 

quadratically, indicating that achieving smaller position 

uncertainties requires disproportionately larger 

momentum uncertainties. Most significantly, there exists 

a minimum achievable position uncertainty: 

(∆𝑥)𝑚𝑖𝑛 = ℏ√𝛽 ≈ 𝑙𝑝𝑙𝑎𝑛𝑐𝑘√𝛽  (5) 

This minimal length represents a fundamental limitation 

on the precision with which distances can be measured, 

independent of the experimental apparatus employed 

 

Multi-dimensional and relativistic extensions 

For astrophysical applications, we must extend this 

framework to three-dimensional systems involving 

multiple interacting particles. The generalization to three 

dimensions introduces additional complexity through the 

need to specify commutation relations between different 

spatial components. The most natural extension assumes 

that the modifications are isotropic: 

[𝑥̂𝑖 , 𝑝̂𝑗] = 𝑖ℏ𝛿𝑖𝑗(1 + 𝛽 ∑ 𝑝̂2
𝑘𝑘 )  (6) 

where 𝑖, 𝑗, 𝑘 run over the three spatial dimensions. This 

choice preserves rotational symmetry while 

incorporating the quantum gravity modifications in a 

symmetric manner. 

The many body generalization introduces further 

subtleties that require careful consideration. For a system 

of 𝑁 particles, we must decide whether the quantum 

gravity modifications affect individual particle 

commutation relations independently, or whether there 

exist collective effects that depend on the total system 

momentum or energy density. The most straightforward 

approach treats each particle independently: 

[𝑥̂𝑖
(𝑛)

, 𝑝̂𝑗
(𝑚)

] = 𝑖ℏδ𝑖𝑗δ𝑛𝑚 (1 + β ∑ ( 𝑝̂𝑘
(𝑛)

)
2

𝑘 ) 

     (7) 

where the superscripts (𝑛) and (𝑚) label different 

particles. 

For relativistic systems, additional complications arise 

from the need to maintain Lorentz covariance. The most 

elegant approach introduces a four-vector generalization: 

[𝑥̂𝜇 , 𝑝̂𝜈] = 𝑖ℏ𝑔μν (1 + β
𝑝2

𝑀𝑃
2𝑐2)  (8) 

where 𝑔𝜇𝜈 is the Minkowski metric, 𝑀𝑝 represents the 

Planck mass, and the four-momentum squared is defined 

as 𝑝̂2 = 𝑔𝜇𝜈𝑝̂𝜇𝑝̂𝜈 

 

 

Statistical mechanics and thermodynamic 

modifications 

The statistical mechanical implications of these 

modifications become particularly important for 

astrophysical applications where we deal with systems 

containing vast numbers of particles at high temperatures 

and densities. The modified uncertainty relations alter the 

fundamental relationship between position and 

momentum phase space volumes, leading to corrections 

in the density of states and, consequently, in 

thermodynamic quantities. 

For a single particle in three dimensions, the phase space 

volume element becomes: 

𝑑3𝑥𝑑3𝑝 → 𝑑3𝑥𝑑3𝑝 (1 + β
|𝑝⃗|2

ℏ2 )
−3/2

 (9) 

This modification affects the calculation of partition 

functions and all derived thermodynamic quantities. For 

a classical ideal gas at temperature 𝑇, the corrections to 

the pressure take the form: 

𝑃 = 𝑛𝑘𝐵𝑇 [1 −
3β

2

𝑚𝑘𝐵𝑇

ℏ2 + 𝑂(β2)]  (10) 

where 𝑛 is the number density and 𝑚 is the particle mass. 

For degenerate fermion systems relevant to neutron star 

physics, the modifications are more complex. The Fermi-

Dirac distribution must be corrected to account for the 

modified density of states: 

ρ(𝐸) = ρ0(𝐸) [1 −
3β

2

𝐸2

ℏ2𝑐2 + 𝑂(β2)] (11) 

where 𝜌0(𝐸) is the standard density of states and 𝐸 is the 

energy. 

 

Computational framework for astrophysical 

applications 

To implement these theoretical modifications in realistic 

astrophysical contexts, we developed a comprehensive 

computational framework that integrates the GUP 

corrections into the standard equations governing stellar 

structure, thermodynamics, and dynamics. The 

framework consists of several interconnected modules: 

 

Equation of state module 

This module computes the modified pressure and energy 

density relations for matter under extreme conditions, 

incorporating both relativistic and quantum corrections. 

The implementation accounts for: 

i. Corrections to the ideal gas equation of state for 

non-degenerate matter 

ii. Modifications to the Fermi gas pressure for 

degenerate electrons and neutrons 

iii. Temperature-dependent corrections to the specific 

heat and other thermodynamic derivatives 

iv. Phase transition behaviours under GUP 

modifications 
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Stellar structure module 

This module solves the modified Tolman-Oppenheimer-

Volkoff (TOV) equations that govern hydrostatic 

equilibrium in relativistic stars. The GUP corrections 

enter through the modified equation of state, leading to 

changes in the mass-radius relationships and other 

macroscopic properties. 

 

Dynamical evolution module 

This module computes the gravitational wave signatures 

from binary neutron star mergers, incorporating the 

modified tidal deformability that results from GUP 

corrections to the stellar structure. The implementation 

includes: 

i. Modified tidal Love numbers based on the corrected 

stellar structure 

ii. Waveform generation including GUP-induced 

phase corrections 

iii. Parameter estimation frameworks for extracting 

GUP parameters from observational data 

 

RESULTS AND DISCUSSION 

Comparative analysis of GUP models 

The landscape of GUP formulations reflects the diversity 

of approaches to quantum gravity, with each theoretical 

framework yielding distinct mathematical structures and 

physical predictions. Understanding these differences is 

crucial for interpreting observational constraints and for 

assessing the relative merits of competing theoretical 

approaches. Table 1 summaries the key characteristics of 

the major GUP formulations currently under 

investigation. 

 

Table 1: Comparison of Major GUP Formulations 

Model Functional Form Key parameters Physical Origin 

Kempf-Mangano-Mann 1 + 𝛽(∆𝑥)2 + 𝛼(∆𝑝)2  𝛼, 𝛽~1 String Theory 

Scardigl 1 + 𝛽(∆𝑝)2/𝑀𝑃
2𝑐2  𝛽~1 Black Hole Physics 

Tawfik-Diab 1 + 𝛽(𝑝2/𝑀𝑃
2𝑐2) + 𝛾√𝑝2/𝑀𝑃

2𝑐2  𝛽, 𝛾~1 Unified Approach 

LQGUP 1 + 𝛽(𝑝2/𝑀𝑃
2𝑐2) + 𝛾𝑝4/𝑀𝑃

4𝑐4 𝛽, 𝛾 Loop Quantum Gravity 

 

The Kempf-Mangano-Mann (KMM) model stands as the 

historical foundation for modern GUP phenomenology. 

Introduced in 1995, this formulation modifies the 

standard uncertainty relation. 

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 + β

(Δ𝑝)2

ℏ2 + α
(Δ𝑥)2

𝑙𝑃
2 ]  (12) 

where 𝑙𝑝 represents the Planck length and α, β are 

dimensionless parameters of order unity. The inclusion 

of both momentum-dependent and position-dependent 

corrections reflects the authors' attempt to capture the full 

range of quantum gravity effects suggested by string 

theory and other approaches. 

The Scardigli model represents a more focused approach, 

concentrating specifically on the minimal length effects 

that emerge most naturally from string theory 

considerations. This formulation employs the modified 

uncertainty relation: 

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 + β

(Δ𝑝)2

𝑀𝑃
2𝑐2]   (13) 

where 𝑀𝑝  is the Planck mass and the parameter 𝛽 reflects 

the strength of string-theoretic corrections. 

Recent developments have led to more sophisticated 

formulations that attempt to incorporate insights from 

multiple quantum gravity approaches. The Loop 

Quantum Gravity-inspired GUP (LQGUP) includes 

higher-order momentum corrections: 

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 + β

𝑝2

𝑀𝑃
2𝑐2 + γ

𝑝4

𝑀𝑃
4𝑐4]  (14) 

Each model yields distinct predictions for the scaling of 

physical effects with system size and energy, as 

illustrated in Figure 1 
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Figure 1: Scaling behavior of minimal length corrections in different GUP models as a 

function of momentum.  

 

The Scardigli model shows quadratic scaling, while 

LQGUP includes additional quartic terms that become 

important at very high energies 

 

Scale hierarchy and dimensional analysis 

The connection between microscopic quantum gravity 

parameters and macroscopic astrophysical observables 

requires careful dimensional analysis and consideration 

of the relevant physical scales involved. The fundamental 

challenge lies in understanding how effects that originate 

at the Planck scale (𝑙𝑃 ∼ 10−35𝑚, 𝑡𝑃 ∼ 10−44𝑠, 𝑀𝑃 ∼
10−8𝑘𝑔)  can manifest in astrophysical systems 

characterized by vastly different scales. 

Consider a neutron star with typical mass 𝑀NS ∼ 1.4𝑀⊙ 

and radius 𝑅NS ∼ 12km. The ratio of the neutron star 

radius to the Planck length is approximately: 
𝑅NS

𝑙𝑃
∼

104 m

10−35 m
∼ 1039   (15) 

This enormous scale separation suggests that direct 

quantum gravity effects should be utterly negligible in 

astrophysical contexts. However, this naive expectation 

fails to account for several crucial factors that can 

amplify quantum gravity signatures in macroscopic 

systems, as detailed in Table 2. 

 

Table 2: Amplification Mechanisms for Quantum Gravity Effects in Astrophysical Systems 

Mechanism Physical origin Amplification factor 

Particle Number Cumulative effects over ~1057 particles 𝑁 × 𝛽 ∼ 1057 × 10−82  

Density Enhancement Extreme densities approach Planck scale (𝜌/𝜌𝑃)1/2 ∼ 10−41  

Structural Sensitivity Stellar properties depend sensitively on EoS 𝒞−1 ∼ 5 − 10  

Phase Accumulation Long-term integration in GW observations 𝑓 × 𝑡obs ∼ 103 − 104  

 

First, the extreme densities achieved in neutron star cores 

approach nuclear saturation density ρ0 ∼ 2.8 × 1014, 

corresponding to energy densities where individual 

particle wavelengths become comparable to inter-particle 

separations. In this regime, quantum effects become 

collectively important even when individual particle 

energies remain far below the Planck scale. 

Second, the cumulative nature of quantum gravity 

corrections means that small modifications to individual 

particle interactions can integrate to produce significant 

macroscopic effects when summed over the ∼
1057particles in a typical neutron star. The key insight is 

that while individual corrections scale as β ∼ (𝐸/𝐸𝑃)2 

where 𝐸 is a characteristic particle energy, the total effect 

scales as 𝑁 × β where 𝑁 is the number of particles. 

To formalize this scaling analysis, consider the 

modification to the pressure in a dense stellar core. The 

leading GUP correction to the equation of state takes the 

form: 
Δ𝑃

𝑃
∼ β

ρ𝑐2

𝑀𝑃
2𝑐4 ∼ β (

ρ

ρ𝑃
)   (16) 

where ρ𝑃 = 𝑀𝑃𝑐2/𝑙𝑃
3 ∼ 1097𝑘𝑔/𝑚3 is the Planck 

density. 

For neutron star core densities ρ ∼ 1015𝑘𝑔/𝑚3, this 

gives: 
Δ𝑃

𝑃
∼ β × 10−82    (17) 

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 
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This result appears to confirm that quantum gravity 

effects are hopelessly small. However, this analysis 

neglects the fact that stellar structure depends sensitively 

on the pressure gradient, and small changes in pressure 

can lead to amplified changes in macroscopic 

observables like mass and radius through the integration 

of the stellar structure equations. 

 

Neutron star structure and tidal deformability 

The effects of GUP modifications on neutron star 

structure manifest most prominently through changes in 

the equation of state and the resulting modifications to 

stellar observables. Of particular interest is the tidal 

deformability, which quantifies how easily a neutron star 

can be deformed by external tidal fields and has become 

a crucial observable in gravitational wave astronomy. 

The dimensionless tidal deformability is defined as: 

Λ =
2

3
𝑘2 (

𝑅

𝑀
)

5

    (18) 

where 𝑘2 is the second-order tidal Love number, 𝑅 is the 

stellar radius, and $M$ is the stellar mass (all in 

geometric units where (𝐺 =  𝑐 =  1). 

The Love number 𝑘2 depends on the detailed structure of 

the star and can be computed by solving the tidal 

deformation equations: 
𝑑𝐻

𝑑𝑟
= 𝐻2 + 𝐻

2π𝑟3(ρ−𝑃)−4π𝑟𝑃+2𝑚/𝑟2

𝑟−2𝑚
+

6

𝑟−2𝑚
 (19) 

where 𝐻(𝑟) is related to the tidal deformation, ρ(𝑟) and 

𝑃(𝑟) are the local density and pressure, and 𝑚(𝑟) is the 

mass enclosed within radius 𝑟. 
The GUP corrections enter through the modified equation 

of state, which affects both the stellar structure (through 

the TOV equations) and the tidal response. Figure 2 

shows the mass-radius relationships for different GUP 

models,  

 

 
Figure 2: Mass-radius relationships for neutron stars with different GUP corrections 

 

The modifications are small but potentially detectable 

with current observational precision. 

The amplification factor can be estimated by considering 

the dimensionless parameter that characterizes the 

compactness of the neutron star: 

𝒞 =
𝐺𝑀NS

𝑅NS𝑐2 ∼ 0.2    (20) 

Changes in the equation of state propagate through the 

stellar structure with an amplification factor roughly 

proportional to 𝒞−1 ∼ 5. More detailed calculations 

show that the amplification can be even larger, 

particularly for observables like the tidal deformability 

that depend on higher derivatives of the stellar structure. 

 

Gravitational wave constraints and observational 

prospects 

For gravitational wave observations, the phase evolution 

of the waveform provides an exceptionally sensitive 

probe of the underlying physics. Small modifications to 

the equation of state translate to measurable changes in 

the gravitational wave frequency evolution through the 

relationship: 

𝑑𝑓

𝑑𝑡
∝ (

𝐺𝑀ℳ

𝑐3 )
5/3

𝑓11/3   (21) 

where ℳ is the chirp mass and the proportionality 

constant depends on the tidal deformability. 

Recent gravitational wave observations, particularly 

GW170817, have placed stringent constraints on the 

neutron star equation of state through measurements of 

the tidal deformability (Abbott et al., 2017; 

Chatziioannou et al., 2018). The effective tidal 

deformability measured from this event was  Λ̃ =
300−230

+420, providing the first direct constraint on the 

neutron star equation of state from gravitational waves. 

To assess the potential for detecting GUP effects, we 

computed the expected modifications to the tidal 

deformability for various GUP models and parameter 

values. Table 2 summarizes the current observational 

constraints and projected sensitivities for future 

detectors. 

10 11 12 13 14 15 16 
1 

1 . 2 
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Table 3: Gravitational Wave Constraints on GUP Parameters 

Observable  Current precision GUP sensitivity Future prospects 

Tidal Deformability ∼ 50% β < 10−2 β < 10−4(𝐶𝐸/𝐸𝑇) 

Chirp Mass  ∼ 0.1% β < 10−5 β < 10−7 

Phase Evolution ∼ 1 𝑟𝑎𝑑𝑖𝑎𝑛 𝛽 < 10−3 𝛽 < 10−5 

 

The dimensional analysis demonstrates that despite the 

enormous scale separation between Planck-scale physics 

and astrophysical phenomena, there exist plausible 

mechanisms for amplifying quantum gravity effects to 

potentially observable levels. The key lies in identifying 

those observables that provide the greatest sensitivity to 

the underlying microphysics while simultaneously 

offering the highest precision in observational 

determination. 

 

Black hole thermodynamics and quantum corrections 

The application of GUP formulations to black hole 

physics reveals another avenue for testing quantum 

gravity theories through astrophysical observations. The 

modifications to black hole thermodynamics arise from 

corrections to the entropy-area relationship and lead to 

observable consequences in Hawking radiation and black 

hole evolution (Feng et al., 2016; Pourhassan et al., 

2017). 

The standard Bekenstein-Hawking entropy 𝑆 = 𝐴/
(4𝐺ℏ) receives corrections in GUP models: 

𝑇 =
ℏ𝑐3

8π𝐺𝑀𝑘𝐵
[1 −

α

2

𝐺ℏ

𝐴𝑐3 + 𝑂(β2)]  (22) 

For stellar-mass black holes, these corrections remain 

extremely small. However, for quantum-scale black 

holes that might have formed in the early universe, the 

effects could be significant and might lead to stable 

remnants that could contribute to dark matter (Casadio et 

al., 2014; Tang, 2024). 

 

CONCLUSION 

The mathematical framework developed in this paper 

provides a systematic foundation for incorporating 

quantum gravity effects into astrophysical calculations 

through extended GUP formulations. Our analysis 

reveals several key insights that will guide future 

theoretical and observational investigations. The 

diversity of GUP models reflects genuine theoretical 

uncertainties about the nature of quantum gravity, but this 

diversity also provides opportunities for observational 

discrimination between competing approaches. The 

distinct scaling behaviors predicted by different models 

translate to different observational signatures, suggesting 

that precision astrophysical measurements could provide 

crucial input for fundamental theory development. 

Moreover, the dimensional analysis demonstrates that 

despite the enormous separation between Planck-scale 

physics and astrophysical phenomena, there exist 

plausible mechanisms for amplifying quantum gravity 

effects to potentially observable levels. The key lies in 

identifying those observables that provide the greatest 

sensitivity to the underlying microphysics while 

simultaneously offering the highest precision in 

observational determination. Additionally, the 

mathematical structures we have developed provide a 

unified language for discussing quantum gravity effects 

across different theoretical contexts. This unification is 

essential for systematic comparison of theoretical 

predictions with observational data and for assessing the 

relative merits of competing theoretical frameworks. The 

framework presented here serves as the foundation for 

detailed applications to specific astrophysical systems. 

Our calculations show that neutron star observations, 

particularly through gravitational wave astronomy, offer 

the most promising avenue for detecting or constraining 

GUP effects. The tidal deformability measurements from 

binary neutron star mergers provide exceptional 

sensitivity to equation of state modifications, with future 

third-generation detectors potentially capable of probing 

GUP parameters at the level of. Looking toward the 

future, the continuing improvement in observational 

capabilities suggests that quantum gravity 

phenomenology through astrophysical observations will 

become an increasingly important component of 

fundamental physics research. The theoretical framework 

developed here represents one step toward realizing the 

potential of astronomy as a laboratory for testing the 

deepest questions about the nature of spacetime and 

gravity. The ultimate goal of this research program is to 

establish observational constraints on quantum gravity 

theories that are sufficiently stringent to guide theoretical 

development and, ideally, to provide definitive tests of 

competing approaches. While this goal remains 

challenging, the rapid pace of progress in both theoretical 

understanding and observational capabilities suggests 

that significant advances are possible in the coming 

decade. 
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