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ABSTRACT 

One of the most crucial procedures in quantum information is quantum 

teleportation. Quantum teleportation, which makes use of the physical resource of 

entanglement, is a fundamental primitive in many quantum information tasks and is 

a crucial component of quantum technologies. It is essential to the ongoing 

development of quantum networks, quantum computing, and quantum 

communication. Here, the practical applications of Bell states, algebra of 

entanglement, and quantum dense coding are highlighted. The fundamentals of 

quantum entanglement are described, along with its characteristics and the Einstein-

Poldolsky-Rosen dilemma. By separating its distinctive properties, this paper 

demonstrated that teleportation will be used practically for quantum key distribution 

in the very near future. It also revealed the fundamental theoretical concepts behind 

quantum teleportation. 

INTRODUCTION 

More than 20 years have passed since the discovery of 

quantum teleportation, which is undoubtedly one of the 

most intriguing and thrilling applications of quantum 

physics' oddities. This intriguing concept was confined 

to science fiction prior to this historic discovery. Charles 

H. Fort first introduced the term "teleportation" in a 

book published in 1931. Since then, it has been used to 

describe the process of moving goods and humans from 

one place to another without actually traveling there. 

Since then, it has ingrained itself into popular culture, 

possibly best represented by the well-known 

catchphrase "Beam up, Scotty" from Star Trek. 

(Pirandola et al., 2015). 

Many of the aforementioned characteristics are shared 

by a quantum information protocol known as quantum 

teleportation, which was discussed in a 1993 conference 

by Benett et al. The physical components of the original 

system stay at the sending location while an unknown 

quantum state of a physical system is measured and then 

rebuilt or reassembled at a distant location. 

Superluminal communication is not allowed in this 

process, which calls for classical communication. Most 

significantly, it needs quantum entanglement as a 

resource. In fact, the quantum information technique 

that best illustrates the nature of quantum entanglement 

as a resource is quantum teleportation: According to the 

principles of mechanics, such a quantum state transfer 

would not be feasible without it (Horodecki et al., 2009; 

Pirandola et al., 2015).  

Two significant applications of quantum information 

theory that benefit from the strength of quantum 

entanglement are superdense coding and teleportation. 

With the former allowing the transfer of classical bits 

using quantum bits and the later allowing the transfer of 

quantum bits using classical bits, these two protocols 

can be thought of as duals of one another. Both 

protocols assume that there is a noiseless channel 

between nodes that share a Bell pair. It might not be 

able to produce flawless Bell pairings in practice. The 

channels utilized for traditional communication in the 

lab are typically loud(Ankur and  Shayan, 2016). 

In 1993, Pati and Agrawal examined the usage of pure 

bipartite states that were not maximally entangled and 

assessed the fidelity of teleportation, referring to it as 

probabilistic teleportation. Popescu (1994) used mixed 

bipartite states to demonstrate that teleportation is 

feasible. Horodecki et al. (1999) demonstrated that not 

all entangled mixed states are suitable for teleportation. 

Horodecki et al. rejected a number known as the totally 

entangled fraction in order to determine if an entangled 

state might be utilized for teleportation. It was 

demonstrated that entangled states can be utilized for 

teleportation as long as this proportion is higher than a 

specific threshold.  
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Distributed computing, cryptography, quantum 

communication, parallel computing, and other 

technologies all take advantage of teleportation and 

entanglement. Among them, cryptography is the 

thriving subject where, in the very near future, 

teleportation and entanglement could be used 

effectively. Public key encryption and shared key 

encryption are two options in classical cryptography. 

However, because a quantum computer can factor the 

prime product very quickly, the public key is susceptible 

to attack. Distributing random numbers becomes 

problematic since, despite the shared key's security, it 

necessitates a large number of shared random numbers 

that cannot be used more than once. Therefore, the 

solution is quantum teleportation/entanglement. 

Tittel et al., (2000) and Jennewein et al., (2000) have 

shown that entangled photons can be used to generate 

and distribute a perfectly secure quantum key (for 

communication and decoding of encrypted messages). 

Users can delete the compromised portions of the data 

since any attempt by eavesdroppers to intercept the 

quantum key will change the contents in a way that can 

be detected. The use of teleportation for quantum key 

distribution is being researched. 

 

Quantum Bits 

Information is manipulated by all computers, and the 

quantum bit, or qubit, is the unit of quantum 

information. While qubits can be in a linear 

superposition of the two classical states, classical bits 

can only have a value of 0. A quantum bit can be in any 

state a|0>+b|1> if the classical bits are denoted by |0> 

and |1>. In this case, a and b are complex numbers 

known as amplitudes, and |a|2 +|b|2 = 1. An irreversible 

disruption is caused by any effort to measure qubits. For 

instance, the qubit makes a probabilistic judgment when 

the most direct measurement on a|0>+b|1>; In either 

scenario, the measuring device indicates which option 

has been selected, but all prior knowledge of the initial 

amplitudes a and b is erased. With probability |a|2, it 

becomes |0 >, and with complementary probability |b|2, 

it becomes |1>. 

A physical system of n qubits needs 2n complex 

numbers to express its state, in contrast to classical bits, 

which may be described by a single string of n zeros and 

ones. Two qubits, for instance, could be in the states 

a|00>+b|01>+c|10>+d|11>. for any complex number 

between a, b, c, and d, with the sole restriction being |a|2 

+|b|2 +|c|2 +|d|2 = 1. 

An additional qubit feature is an entanglement property. 

Take the two-qubit state (|00>-|01>-|10>+|11>)/2 into 

consideration. This state can be factored into the product 

of two one-qubit states, each of which is (|0>-|1>)/(√2), 

making it simpler than it first appears.In a similar vein, 

many n-qubit states can be described using only 2n 

numbers, which is significantly fewer than the 2n 

numbers typically used, because they can be expressed 

in factored form. 

Certain unusual states, such (|01>-|10>)/(√2), cannot be 

factored, though. With equal probability (1/(√2))2, these 

two qubits can be measured to produce either 0 and 1 or 

1 and 0, but it is not known which of these two results 

will be obtained until the measurement is actually 

carried out. There is no classical comparable for this.  

 (Brassard et al., 1998). 

 

Single Qubits 

A two-level system with the levels |0> and |1> as its 

quantum states can be expressed as follows: 

|𝜓 >=a|0>+b|1>      (1) 

 

The complex numbers a and b in this case meet the 

normality criterion |a|2+|b|2=1. The idea of quantum 

bits, or qubits, originated from the ability of such a 

system to store binary information in analogy with a 

classical bit having logical states 0 and 1. Unitary 

transformations that maintain the norm are operations 

that map one quantum state | ψ >=a|0>+b|1> onto 

another quantum state |ψ'>=a'|0>+b'|1>. As unitary 2x2 

matrices acting on a quantum state vector | ψ >, they can 

be written as follows: 

| 𝜓  >= (𝑎
𝑏
)    (2) 

An example of such operation is the Hadamard 

operation: 

H=
1

√2
(
1 1
1 −1

)    (3) 

which creates an equal superposition (|0>|1>) between 

the states |0> and |1>./2. Representing a two-level 

system as a point on a unit sphere with polar 

coordinates, as illustrated in Fig. 1:1, is a practical 

method of visualizing its state. The vector λ=(cosθ sinθ, 

sinθ sinθ, cosθ) is the Bloch vector, and this image is 

commonly referred to as the Bloch sphere representation 

in this image can be written as: 

| 𝜓 >=expiϒ[cos(
𝜃

2
)|0>+expiφsin(

𝜃

2
 )|0>] (4) 

In this case, the global phase factor expiϒ is typically 

left out because it has no discernible impact. In the 

Bloch sphere representation, unitary operations take the 

form of Bloch vector rotations. 
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Figure1: Bloch sphere representation of a two level system 

 

Thereby, rotations about the x-,y-and z-axes are given 

respectively by: 

Rx(θ) =exp(-i
𝜃

2
X)=cos

𝜃

2
I -isin

𝜃

2
X=(

𝑐𝑜𝑠
𝜃

2
−𝑖𝑠𝑖𝑛

𝜃

2

−𝑖𝑠𝑖𝑛
𝜃

2
𝑐𝑜𝑠

𝜃

2

)  

     (5) 

Ry(θ)=exp(-i
𝜃

2
Y)=cos

𝜃

2
I -isin

𝜃

2
Y=(

𝑐𝑜𝑠
𝜃

2
−𝑠𝑖𝑛

𝜃

2

𝑠𝑖𝑛
𝜃

2
𝑐𝑜𝑠

𝜃

2

)   

     (6) 

Rz(θ)=exp(-i
𝜃

2
Z)= cos

𝜃

2
I - 

isin
𝜃

2
Z=(

exp (−𝑖
𝜃

2
) 0

0 exp (𝑖
𝜃

2
)
)   (7) 

 

Where X, Y and Z are the pauli matrices and I the 

identity matrix. These matrix are defined by: 

X=(
0 1
1 0

)    (8) 

Y=(
0 −𝑖
𝑖 0

)    (9) 

Z=(
1 0
0 −1

)    (10) 

I=(
1 0
0 1

)    (11) 

 

Multiple Qubits 

The 2N product states of the individual qubit states 

|0>,|1> provide an appropriate set of basis states for a 

system of N qubits: 

|n>=|iN >⊗ iN – 1 > ⊗ ….. ⊗ |i1 >  (12) 

where n = ∑_(k=1)^Ni_(k.) 2k-1 and ik ∈ 0;1. Please 

take note that the first qubit in this tensor product has 

the rightmost state, which may initially seem 

counterintuitive. These computational base states can be 

decomposed into any N qubit quantum state. For 

instance, when there are two qubits, we have: 

| 𝜓 > = a0 |00> + a1|01> + a2|10 > + a3|11>;  (13) 

where the normality requirement ∑_(i=0)^(N-1)|ak|2 = 

1 is obeyed by the coefficients ak. Unitary NXN 

matrices explain quantum operations working on a 

system of N qubits. The operation I ⊗X, for instance, 

which involves applying the identity operation to the 

second qubit and X to the first, is explained by: 

I ⊗ X = (

0  1  0  0
1  0  0  0
0  0  0  1
0  0  1  0

)   (14) 

Where the matrix is notated with respect to the basis 

order (|00>, |01 >, |10 >, |11>). 

 

Controlled Quantum Gates 

Controlled operations are those in which the state of one 

qubit is altered in response to the state of another qubit. 

The controlled -NOT or CNOT operation is a crucial 

illustration of a controlled operation:  

U21
CNOT  =(

1   0   0   0
0   1   0   0
0   0   0   1
0   0   1   0

)   (15) 

If the second qubit (the control qubit) is in state |1>, this 

operation flips the first qubit's (the target qubit's) state; 

if it is in state |0>, it leaves the target qubit unaltered. To 

indicate which qubit serves as the control and which as 

the target qubit, we use the notation 

UCNOTcontrol;target. The controlled Z or phase gate, 

which is another controlled two-qubit operation, is 

expressed as follows: 

∅ = (

1   0   0    0
0   1   0    0
0   0   1    0
0   0   0 − 0

)   (16) 

The roles of the control and target qubits are 

interchangeable in the context of the phase gate. Since 

the controlled NOT gate can be broken down into two 

Hadamard operations and a phase gate, phase gates and 

controlled NOT operations are closely related: 

U2
CNOT = H1 . ∅. H1    (17) 

where H1 = I ⊗ H is the Hadamard operation acting on 

the first qubit: 

H1 = 
1

√2
  (

1    1     0     0
1  − 1    0     0
0    0      0     1
0     0    1 −  0

)  (18) 
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The target qubit is the qubit to which the Hadamard 

operations are applied. For quantum computing, 

controlled operations are essential. It has been 

demonstrated that single qubit rotations and controlled 

NOT operations are universal (Mark, 2005; Barenco et 

al., 1995), meaning that a combination of single qubit 

and controlled NOT operations can actualize any 

arbitrary unitary operation. 

 

Measurement in the Bell Bases 

A projective measurement in the Bell state basis is a 

specific case of a measurement. The four Bell states, 

which are represented in the computational basis as 

follows, provide this basis: 

𝜓 + = 
1

√2
(|10>+ |01>); = 𝜓 - 

1

√2
 (|10>|01>);∅+ = 

1

√2
 

(|00>+|11>),∅-= 
1

√2
 (|00>|11>).   (19)  

It is preferable to do measurements in the computational 

basis (|0>;|1>) in the majority of experimental setups. 

Therefore, the Basis states (∅+, ∅-, ψ+, ψ-) must be 

mapped into the computational basis states of two qubits 

(|00>;|01>;|10>;|11>) in order to make a measurement in 

the Bell basis. This is accomplished by applying a 

Hadamard operation H1 to qubit 1 after first applying a 

controlled NOT UCNOT12, in which qubit 1 is the 

control qubit and qubit 2 is the target qubit. Take, for 

instance, how these operations affect the Bell state +: 

1

√2
(|10>+|01>) 

𝑈12
→  𝐶𝑁𝑂𝑇

1

√2
 (|10>+|11>)=

1

√2
|1>(|0>+|1>) 

→𝐻1 |10>.     (20)  

It's interesting to note that this process is bidirectional; 

that is, Bell states are produced by applying a Hadamard 

operation first, followed by the CNOT gate, starting 

with the computational basis states.  

 

Sequences of Quantum Operations: Quantum 

Circuits 

The most basic operations that can be used on a single 

qubit or a register of several qubits were presented in 

the preceding sections. Generally speaking, a quantum 

computer algorithm will have a large number of these 

operations. An analogy to classical computing, where a 

computation is constructed from a network of several 

logic gates, such a series of operations is also known as 

a quantum circuit. The following introduces the related 

rules and notations and illustrates various approaches of 

writing quantum algorithms. Initially, in the case of 

quantum states employing the bra-and-ket-notation. 

The order of the qubits will be |qubitn,…, 

qubit2,qubit1>. The same order will apply to the outer 

products of operators, so that, for instance, I ⊗ I ⊗ X 

indicates an X-operation on qubit 1 and the identity 

operation on qubits 2 and 3. The product of the related 

operators can be used to express further unitary 

operations on a register of qubits, resulting in the total 

unitary operation U= …OP3OP2OP1| ψm >. 

 

 
Figure 2: An illustration of a quantum circuit 

 

Quantum teleportation is being implemented via the 

circuit. From left to right is the temporal order. One 

qubit's state is represented by each horizontal line. 

Various symbols are used to indicate the operations 

performed on the qubits.  

Fig. 2 illustrates a quantum circuit in still another 

manner. The following is how one should interpret this 

graphical depiction of a register of qubits and the 

actions on them: One qubit's state is represented by each 

horizontal line. Different symbols are used to represent 

the operations that are performed on the qubits. When 

reading the circuit from left to right, time increases.  

 

Entangle States of Two Qubits 

The topic of whether a quantum system's quantum state 

can be broken down into a product of its subsystem 

states is typically linked to a notion of entanglement of a 

quantum system with numerous subsystems. A bipartite 

system with two qubits in a pure state can be used to 

demonstrate this method. If a state of this bipartite 

system can be expressed as a product of the states of its 
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subsystems, it is referred to as a product state or 

separable: 

Ψ = 𝜓1  ⊗ 𝜓2    (21) 

Both subsystems are totally independent of one another 

in this scenario. The status of one subsystem will not be 

impacted by a measurement made on the other. There 

will be no correlation between the measurement 

findings for both subsystems.  

On the other hand, an entangled state is one that cannot 

be expressed as a product of subsystem states. The Bell 

states  are a well-known illustration of entangled states. 

The subsystems are no longer autonomous in this 

situation. With highly correlated measurement findings, 

a measurement on one subsystem will cause a state 

reduction in both subsystems. The following is an 

expansion of this definition for mixed states. If there is a 

decomposition into product states, a state that is 

characterized by the density matrix ρ is considered 

separable: 

ρ = ∑𝑝𝑖.𝑝1  ⊗  p2, pi >0,  ∑𝑝𝑖  =1  (22) 

       i 

When such a decomposition is absent, an entangled 

mixed state is identified. Classical correlations, which 

are defined by the probabilities, can also exist in mixed 

states in addition to quantum correlations.  

Unfortunately, it is difficult to confirm explicitly 

whether or not a decomposition such as that shown in 

Eq. 22 exists for a given density matrix. However, a 

criterion that depends on the behavior of the partial 

transposition ρPT exists for bipartite systems to identify 

whether a state is separable or not. The definition of the 

partial transpose ρPT is: 

𝜌PT = (𝜎𝑥⊗ I). 𝜌    (23) 

It has been demonstrated that a mixed state is entangled 

if and only if the eigenvalue of its partial transposition is 

negative (Mark, 2005: Asher, 1996). 

 

Pioneering Effects Based on Entanglement 

Quantum Key Distribution Based on Entanglement 

A. Ekert was the first to develop quantum information 

theory, which uses entanglement (Ekert, 1991; 

Horodecki et al., 2007). Two truths were widely known: 

presence of a highly linked state 

|𝜓-> = 
1

√2
 (|0 >| 1> - |1>|0>)  (24) 

and Bell inequalities, which these states contradict. 

Ekert demonstrated how they can be combined to 

provide a private cryptographic key. In contrast to the 

original BB84 technique, which makes use of direct 

quantum communication, he thus established an 

entanglement-based quantum key distribution. The 

following is the core of the protocol: Bob and Alice can 

get the EPR pairings from a source. Alice and Bob 

obtain a string of perfectly (anti)correlated bits, or the 

key, by measuring them in basis (|0 >, |1>). They 

examine Bell inequalities on a subset of pairings to 

confirm their security. In general, the values would have 

existed prior to the measurement if Eve had knowledge 

of the values that Alice and Bob obtain in the 

measurement. 

 There would be no violation of Bell's inequality. It 

appears that no one can know the values if Bell 

inequalities are broken because they do not exist prior to 

Alice and Bob's measurement. Polarization entangled 

photons from spontaneous parametric down conversion 

(Naik et al., 2000) and entangled photons in energy-time 

(Tittel et al., 2000) were used in the first 

implementations of the Ekerts encryption protocol. 

There were two possible directions for quantum 

cryptography research after Ekert's concept. One 

approach, as proposed by Bennett et al. (1992), was to 

view the violation of Bell inequality as merely 

confirming that Alice and Bob have good EPR states, as 

this is adequate for privacy: 

No one can know the outcomes of Alice and Bob's 

measurements if they are in a true EPR condition. This 

is what really occurred; only this method was created 

for a long period. Eve, the eavesdropper in this instance, 

complies with quantum mechanical laws. Treating the 

EPR state as the cause of odd correlations that defy Bell 

inequality was the second approach. This results in a 

new definition of security: protection from 

eavesdroppers who adhere only to the no faster than 

light communication principle rather than the laws of 

quantum mechanics. 

 

Quantum Dense Coding 

There is a realistic limit on the potential miracles that 

could result from quantum formalism in quantum 

communication. According to Holevo (1973) and 

Horodecki et al. (2007), this is the Holevo bound. It 

basically says that one qubit can only carry one bit of 

classical information at most. Bennett and Wiesner 

found a fundamental primitive that can circumvent the 

Holevo bound in 1992. This primitive is known as dense 

coding. By transmitting one a priori entangled qubit, 

dense coding enables the communication of two 

classical bits. 

Let's say Alice can only send one qubit and wishes to 

send Bob one of four messages. He must send a qubit in 

one of 22 = 4 states in order to convey two bits with one 

qubit. Additionally, the states must be orthogonal to one 

another in order for Bob to distinguish between them 

and achieve the optimal bound 2. However, a single 

qubit can exist in only two orthogonal states. Is 

entanglement useful in this case? Instead, let Bob and 

Alice be in the same EPR state.  

The ingenious notion now is that the pair of entangled 

qubits together, rather than the sent qubit, should be in 

four orthogonal states. Let's see how it functions. Let's 

say Bob and Alice are in the same singlet state. Alice 

rotates her qubit, which is entangled with Bob, with a 
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matching transformation if she wishes to inform Bob of 

one of the four occurrences (0,1,2,3).  

𝜎0 = (
1 0
0 1

), 𝜎1 = (
0 1
1 0

), 𝜎2 = (
1 0
0 1

), −𝑖𝜎3 = 

(
0 −1
1 0

)         (25) 

The matching | ψk> Bell state is created by rotating 

Alice's qubit's singlet state by σk. Bell states are 

mutually orthogonal, therefore for k ≠ k | ψk >= [σk]A 

⊗IB | ψ0 > is orthogonal to |ψk1 > = [σk1]A IB| ψ0 >. 

Bob can now distinguish between the four Bell states 

and deduce k if he receives Alice's portion of the 

entangled state after rotation. Bob has received log4=2 

bits of information as a result of Alice sending one 

qubit.  

Why does the Holevo bound not conflict with this? This 

is because Bob's qubit and the communicated qubit were 

already entangled. Holevo bound does not apply in this 

scenario, hence this peculiar occurrence can occur. 

Additionally, take note that two qubits were transferred 

in total; one was required to share the EPR state. 

Another way to look at this is that sending the first half 

of the singlet state—let's say at night, when the channel 

is less expensive—equals sending one bit of possible 

communication.  

Therefore, it is equivalent to opening the door to future 

communication: Alice might not know what she would 

say to Bob in the future at this point. She is aware of 

what to say during the day, but she is only able to send 

one qubit due to the costly channel. In other words, she 

only sent one real message. Nevertheless, she uses both 

the actual and potential bits to transmit in a total of two 

classical bits when sending the second half of the 

singlet, much like in dense coding protocols. A good 

quantum memory for storing EPR states is assumed to 

exist in Alice and Bob, which is still beyond the 

capabilities of present technology. 

Alice and Bob are in the same pure maximally 

entangled state in the original dense coding process 

(Barenco and Ekert, 1995; Bose et al., 2005; Bru et al., 

2005; Hausladen et al., 1996; Mozes et al., 2005; Ziman 

and Buzek, 2003; Horodecki et al., 2007). 

 

Entanglement Swapping 

Typically, a direct contact between two particles that are 

placed close to one another is the source of quantum 

entanglement. Can two particles that have never 

previously interacted become entangled (correlated in a 

quantum way)? (Bennett et al., 1996 a; Yurke and 

Stoler, 1992b; Zukowski et al., 1993) The response is in 

the affirmative. Let Bob and David share a maximally 

entangled state, and Alice and Clare share a maximally 

entangled state |∅+ > = 1/√2 (|00>+|11>): 

|∅+ > AC ⊗|∅+ >BD      (26) 

 

It is clear that such a situation may be created so that 

particles A and D have never seen one another. Clare 

and Bob now measure together in Bell basis. It turns out 

that the particles A and D collapse to some Bell state for 

all possible outcome. Alice and Bob can execute local 

rotation to achieve the entangled state AD+ if they learn 

the outcome. Because they came from distinct sources, 

the particles of Alice and David are entangled in this 

fashion even if they never had direct contact. 

It is evident that this is the same as teleporting one EPR 

pair through the other. Any pair can be selected to be 

the channel or the teleported pair because the protocol is 

symmetric. This concept has been used to implement 

quantum repeaters (Dur et al., 1999), which enable the 

theoretical distribution of entanglement among parties 

that are arbitrarily separated. Bose et al. (1998) adapted 

it to a multipartite context.  

One application of swapping is in multipartite state 

distribution, which is helpful in quantum cryptography, 

for instance. The requirements for the optical 

implementation of teleportation and entanglement 

switching have been determined in (Zukowski et al., 

1993).Accordingly, entanglement switching was 

achieved in the laboratory (Horodecki et al., 2007; Pan 

et al., 1998). 

 

Quantum Teleportation Process 

The practical use of the quantum teleportation principle 

is demonstrated by the experimental work of Benett 

(1993) and subsequent theoretical and experimental 

work by others. The question of whether quantum 

entanglement might be used to design a teleportation 

procedure to move information between remotely 

distant quantum systems non causally (i.e., at FTL 

speed) was finally resolved by this astounding technical 

feat. We are now providing an inferred overview of the 

actual teleportation process, which is based on the 

outline of (Benett, 1993). This is a multi-step process of 

teleporting any particle or photon's quantum state | χ > 

(which corresponds to an N-state system) from one 

place to another.  

Let quantum state |𝜒> = a|0>+ b|1> of a particle is to be 

teleported from one location to another- 

Step1: Two quantum subsystems, |ϕ> and |ψ>, are 

prepared in an EPR entangle state. John Bell established 

that there are only four potential entangled states for a 

two-qubit quantum system, which are referred to as the 

Bell states (Nielson and Chuang, 2003): 

|Ѱ+ > = (|00>+|11>), |Ѱ- >= (|00>|11>), |Φ+ > = 

(|01>+|10>),| Φ- >= (|01>|10>)            (27) 

Step2: Now, we send | Φ > to sender Alice's location. 

Additionally, transmit |ψ> to Bob's receiver's position. 

These two subsystems do not yet have any information 

on |χ>, yet they are non-causally correlated by 

entanglement. At this point, the two subsystems 
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resemble an open quantum channel that is prepared to 

send data. 

Step3: Alice now performs a Bell state measurement on 

the combined system | χ>|ϕ > after bringing the 

teleported state | χ > into contact with the entangled 

state |ϕ> in order to carry out the teleportation. 

Step 4: Alice uses a traditional classical communication 

route to provide Bob a detailed explanation of the Bell 

state measurement's result. 

Step5: Bob's photon is in the state |ψ> = a|1>+b|0> if the 

result of Alice's Bell state measurement is |ϕ+>. In order 

to obtain an exact duplicate of the state of | χ>, Bob now 

knows the set of linear transformations (i.e., appropriate 

unitary operation) that should be done to | ψ>. 

Following linear transformation, the state of | χ> is now 

the same as it was before. 

Not the particles or photons themselves, but their 

quantum states are destroyed and rebuilt throughout the 

teleportation process. Q-Teleportation Is Fundamentally 

Limited by Decoherence. We made the irrational 

assumption that Alice and Bob shared an EPR entangled 

pair devoid of noise or decoherence in order to make the 

Q-Teleportation scenarios implied. Decoherence is the 

process by which an object's quantum states deteriorate 

due to information leaking to or from the environment 

(also known as environmental noise) through errant 

interactions with the object. 

Through photon loss or phonon heating, noise or 

decoherence can affect the quantum link (also known as 

the EPR interaction) between two systems. Our capacity 

to process quantum information is fundamentally 

limited by decoherence. By demonstrating that fault 

tolerant quantum computation is achievable, research is 

underway to determine whether decoherence can be 

minimized, avoided, or otherwise (partially or 

completely) eliminated (Dur and Briegel, 2003; Bashar 

et al., 2009).  

 

Discussion 

Einstein's goal was to illustrate that quantum mechanics 

was flawed, if not to refute it. Rather, he sparked a 

philosophical discussion that eventually validated 

quantum mechanics. Bell's inequality and the ERP 

paradox demonstrated non-locality, which supported the 

existence of quantum entanglement. Quantum 

entanglement quickly led to the development of 

quantum teleportation. There are numerous real-world 

uses for quantum entanglement and teleportation.  

It is difficult to know every internal property of a 

quantum particle due to the no-cloning theorem and the 

observational collapse of superposition wave functions. 

Quantum teleportation is the only method that can 

replicate a quantum particle in its entirety. Additionally, 

quantum teleportation is not restricted to two particles. 

One trillion atoms were transported in an experiment 

conducted at the Niels Bohr Institute in 2006. Although 

this might not be sufficient to teleport a human, it does 

demonstrate that the number of particles that can be 

transferred appears to be infinite. The notion that human 

consciousness is a quantum phenomena is supported by 

Roger Penrose.  

If Penrose and other proponents of this theory are right, 

then using quantum teleportation to make sure all of the 

brain's particles are in the proper state is the only 

effective method of transferring someone's 

consciousness. There are numerous uses for quantum 

entanglement and teleportation in dense coding and 

quantum computing. The manipulation of two qubits by 

changing the state of only one has been demonstrated by 

quantum entanglement. Additionally, entanglement can 

reduce computing time. 

Instead of waiting for the two particles to interact, 

entanglement might be used to do the calculation 

quickly if two qubits are required in a quantum 

computer but are separated by a certain distance. 

Additionally, Caltech has a plan to connect two or more 

quantum computers via quantum teleportation to 

establish a quantum internet. Although teleportation and 

quantum entanglement may appear like theoretical 

concepts, they have already been demonstrated to work 

and will probably have a significant impact in the not-

too-distant future.  

 

CONCLUSION 

Since its inception, the field of quantum teleportation 

has advanced remarkably. Based on the well-known 

idea of quantum entanglement, which Einstein referred 

to as "spooky action at a distance" in his EPR work, we 

have proposed the concept of quantum teleportation. We 

demonstrated that entangle particles can act as 

transporters, meaning that one can transfer the attributes 

of one entangle particle to another by adding a third 

message particle to it.  

We have shown that with current technology, 

information can be transferred a certain distance. In 

order to assist computer scientists and engineers in 

moving forward in the realm of quantum key 

distribution, this seminar has attempted to create a basic 

framework for utilizing teleportation in the system. 
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