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ABSTRACT 

Chaos theory, being a branch of mathematics that deals with disordered or random-

seeming mathematical systems, is receiving more attention in market-related 

circumstances as financial markets become more unstable and the level of 

unpredictability becomes more prevalent. Understanding the potential of chaos 

theory, its limitations, and its relationship to traditional economic theories is 

essential for anyone working in the finance sector. Chaos theory is ideally suited for 

comprehending the financial market, which is subject to both internal and external 

influences due to its high degree of instability and growing randomness. This work 

examines the complete synchronization, anti-synchronization and hybrid 

synchronization of two non-identical financial systems. The nonlinear active 

controllers are designed, and the error dynamics stability for each phenomenon is 

accomplished by two theoretical approaches - linear system theory and Lyapunov 

second method. Controllers are designed by using the relevant variables of drive 

and response systems in such a way that the error variables are stable. The 

controllers, when activated, enable the drive and response state variables to achieve 

identical dynamics despite starting from different initial conditions. Numerical 

simulations are performed using the ODE45 algorithm embedded in MATLAB 

software package to show the feasibility and effectiveness of the designed 

controllers. 

INTRODUCTION 

In various branches of physics, many models are 

suggested to study real-world systems and their 

dynamical behaviours are studied via the Lagrangian or 

the Hamiltonian approach (Baleanu et al., 2020). These 

dynamical behaviours are being mod-elled as dynamical 

systems described by differential equations (Wen et al., 

2017); accordingly, the parameters' effects on such 

dynamical systems are important (Kilikevic-ius et al., 

2015). Chaos theory has found widespread appli-cation 

in finance because of the unpredict-able behaviour of 

market participants (Hsieh, 1991). For example, when 

examining stockholders' equity or cash flow at the end 

of the year, both are indexed by profit and loss; different 

values of profit and loss are associated with the same 

values of stockholders' equity and cash flow at the end 

of the year, suggesting the lack of a unique solution to 

explain this relationship and the difficulty of making 

predictions. Consequently, at the end of the year, 

stockholders' equity and cash flow are thus greatly 

affected by even slight variations in profit or loss. These 

discoveries are suggestive and indicative, introducing 

the language of chaos to the management view of 

financial statements (Juarez, 2015). 

Over the past few decades, the study of chaos has 

considerably impacted the fundamentals of science and 

engineering. One of the most interesting discoveries in 

this field is the discovery of chaotic synchronization, a 

notion that was first suggested by Fujisaka and Yamada 

(1983). Synchronizing two chaotic systems that are 

identical or non-identical and have distinct initial 

conditions is one of the significant advances in the study 

of nonlinear science. A significant article on the 

synchronization of chaotic systems employing a drive-

response arrangement was later presented by Pecora and 

Carroll (1990). For the response system's outputs to 

synchronize with the drive system's trajectory, the drive 
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system's outputs are used to regulate the response 

system.  

Since the discovery of the synchronization of chaotic 

systems, the study of the synchronization of chaotic and 

hyperchaotic systems arising from various initial 

conditions has attracted a lot of attention. It has sparked 

nearly two decades of vigorous research and has been 

hailed as a major advancement in chaotic dynamics 

(Freeman,1992), information processing, and secure 

communication (Gabriel and Hilda, 1995; Pikovsky et 

al., 2002; Bowang et al., 2007; Eisencraft et al., 2012; 

Ren et al., 2013; Aguilar_Lopez et al., 2014; Filali and 

Pierre, 2014; Olusola et al., 2020) because of its crucial 

and interdisciplinary applications in a variety of 

scientific and technological studies. 

Complex chaotic systems are susceptible to small 

perturbations, as demonstrated by Lorenz, and these can 

upset a system and cause it to deviate significantly from 

its equilibrium (Wu et al., 2007; Rameika, 2007). Two 

fundamental feedback and causal loops in market 

system dynamics affect different facets of the stock 

market. A positive feedback loop reinforces itself. For 

instance, a positive influence in one variable raises the 

other, which raises the first variable as well. As a result, 

the system experiences exponential growth, which 

pushes it out of equilibrium and ultimately causes the 

system to collapse. On the other hand, a negative 

feedback loop produces a similar result, with the system 

reacting to a change in the opposite way. High 

uncertainty periods could result from factors other than 

system dynamics. Market volatility can also be brought 

on by external forces like earthquakes, floods, or natural 

disasters, as well as by abrupt declines in a particular 

stock (Bourdeau-Brien and Kryzanowski 2017). 

Some properties of systems that have historically proven 

challenging to adequately model have been explained by 

the contentious and complex idea of chaos. The 

financial markets are one example of this, and they also 

have the advantage of having a wealth of historical data. 

The ability of apparently sound financial markets to 

experience abrupt shocks and crashes is an intriguing 

financial phenomenon that chaos theory can assist in 

explaining (Lu, 2020). The argument made by 

proponents of chaos theory is that price changes last for 

stocks, bonds, and other securities; therefore, periods of 

low price volatility could not be a reliable indicator of 

the state of the market. Investors are left in the dark 

regarding the timing of crashes when the price is used as 

a lagging indicator. 

According to the fractal market theory, price 

movements during periods of market turbulence could 

follow a fractal pattern as opposed to a random walk 

(Metescu, 2022). Put differently, it is possible for 

movements that take place on a tiny time scale to repeat 

on a greater scale. Naturally, this aligns with the 

experiences of most investors who have gone through 

financial meltdowns and black swan events. Some 

people appear to be able to anticipate market downturns, 

but they frequently look much beyond price data to 

identify structural flaws that the majority of the market 

has missed. The primary caution associated with chaos 

theory is its frequent application as a means of 

devaluing investments (Klioutchnikov et al., 2017). 

Long-term market consistency is higher than short-term 

market volatility, which is nearly impossible to 

anticipate. 

The Fractal Market Hypothesis in finance forecasts 

stock market fluctuations by utilizing aspects of chaos 

theory (Arashi and Rounaghi, 2022). The efficient 

market hypothesis, which postulates that prices move in 

a random walk, is expanded upon by this theory. 

According to the fractal market theory, price 

movements might exhibit similar behaviour when 

observed over several time horizons under periods of 

high uncertainty. This could be applied to technical 

analysis, where future price movements can be 

predicted using recursive or repeating patterns. 

Consequently, there is a compelling need to synchronize 

and control the chaotic behaviour of financial systems 

by designing appropriate controller. Thus, this present 

work. 

 

Systems Description and Equilibrium Analysis 

Two different financial systems are considered in this 

work and their stabilities are also investigated. 

 

Systems Description 

A chaotic financial system, which has been investigated 

by Liao et al., (2020), Dousseh et al., (2022) and Tusset 

et al., (2023), is describable by the following 

autonomous differential equations: 

 {

𝑥̇1 =  𝑓𝑥3 + 𝑥2𝑥1 − 𝑎𝑥1
𝑥̇2 = −𝑏𝑥2

2 − ℎ𝑥1
2 + 𝜏

𝑥̇3 = −𝑐𝑥3 − 𝑔𝑥1 − 𝑑𝑥2,

   (1) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝜏, 𝑓, 𝑔 and ℎ are parameters that 

determine the behaviour of the system. The parameter 

values are 𝑎 = 0.3, 𝑏 = 0.02, 𝑐 = 1, 𝑑 = 0.05, 𝜏 =

1, 𝑓 = 1.2, 𝑔 = 1, and ℎ = 0.1. 1,x 𝑥2, 𝑥3 are state 

variables which evolve with time. 𝑥1 represents the 

interest rate, 𝑥2 represents the investment demand and 

𝑥3 represents the price index. The variation in the 

interest rate is proportional to the price index, and the 

investment demand influences the rate interest (Liao et 

al., 2020; Dousseh et al., 2022; Tusset et al., 2023). 

With the choice of the parameter values and initial 

condition (0,0,0); the phase diagram of Equation (1) is 

as shown in Figure 1. 
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Figure 1: Phase portrait of Equation (1) with the following parameters 𝑎 = 0.3, 𝑏 =
0.02, 𝑐 = 1, 𝑑 = 0.05, 𝜏 = 1, 𝑓 = 1.2, 𝑔 = 1, ℎ = 0.1 

 

Another chaotic financial system by Xiao-Dan et al., 

(2013) is describable by following autonomous 

differential equations: 

{
𝑦̇1  = 𝑝(𝑦2 − 𝑦1) + 𝑦2𝑦3
𝑦̇2  =  𝑞𝑦1 − 𝑦2 − 𝑦1𝑦3
 𝑦̇3 = 𝑦1𝑦2 − 𝑟𝑦3,

    (2) 

where 1,y 𝑦2 and 𝑦3 are also state variables that evolve 

with time and denote the occurrence value risk, the 

analysis value risk and the control value risk in the 

current market, respectively. Parameters 𝑝, 𝑞and  𝑟 

determine the system's behaviour. With the parameter 

values𝑝 = 10, 𝑞 = 28, 𝑟 =
8

3
; and initial condition 

(1,1,1); the phase diagram of Equation (2) is as shown 

in Figure 2. 

 

Figure 2: Phase portrait of Equation (1) with the following parameters𝑝 = 10, 𝑞 = 28, 𝑟 =
8

3
. 
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The divergence of Equation (1) is in the form:  

{
Δ𝑉 =

𝑑𝑥̇1

𝑑𝑥1
+

𝑑𝑥̇2

𝑑𝑥2
+

𝑑𝑥̇3

𝑑𝑥3

Δ𝑉 = −𝑎 − 𝑏 − 𝑐.
   (3) 

Obviously, for the parameter values considered, Δ𝑉 <
0. Consequently, Equation (1) is dissipative (Gan, 

2021). 

Also, the divergence of Equation (2) is in the form: 

{
Δ𝑉 =

𝑑𝑦̇1

𝑑𝑦1
+

𝑑𝑦̇2

𝑑𝑦2
+

𝑑𝑦̇3

𝑑𝑦3

Δ𝑉 = −𝑝 − 1 − 𝑟.
     (4) 

For the parameter values considered, Equation (2) is 

also dissipative. 

 

Equilibrium Analysis 

The equilibria of Equation (1) can be obtained by 

solving: 

{

 𝑓𝑥3 + 𝑥2𝑥1 − 𝑎𝑥1 = 0

−𝑏𝑥2
2 − ℎ𝑥1

2 + 𝜏 = 0
−𝑐𝑥3 − 𝑔𝑥1 − 𝑑𝑥2 = 0,

    (5) 

Linearizing the system around the equilibrium point𝐸0, 

it yields the following Jacobian matrix: 

𝐽 = |
−(𝑎 − 𝑥2) 𝑥1 𝑓

−ℎ −𝑏 0
−𝑔 −𝑑 −𝑐

| .    (6) 

The eigenvalues can be determined by solving the 

following cubic equation: 

−𝜆3 + (𝑎 + 𝑏 + 𝑐 − 𝑥2)𝜆
2 + (𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 + 

𝑓𝑔 − 𝑏𝑥2 − 𝑐𝑥2 + ℎ𝑥1)𝜆 + 𝑎𝑏𝑐 + 𝑏𝑓𝑔 − 𝑑𝑓ℎ + 
𝑐ℎ𝑥1 − 𝑏𝑐𝑥2 = 0.    (7) 

For the centrally located equilibrium point 𝐸0(0,0,0)and 

parameters values 𝑎 = 0.3, 𝑏 = 0.02, 𝑐 = 1, 𝑑 =
0.05, 𝑓 = 1.2, 𝑔 = 1 and ℎ = 0.1, Equation (6) yields 

eigenvalues of: 𝜆1,2 = −0.6520 ±  1.0393𝑖, 𝜆3 =
−0.0159. All the eigenvalues have negative real parts, 

therefore the equilibrium point of Equation (1) is a 

stable equilibrium point (Woolf, 2009). 

Also, the equilibria of Equation (2) can be obtained by 

solving: 

{
𝑝(𝑦2 − 𝑦1) + 𝑦2𝑦3 = 0
𝑞𝑦1 − 𝑦2 − 𝑦1𝑦3 = 0
 𝑦1𝑦2 − 𝑟𝑦3 = 0,

    (8) 

and linearizing the system around 𝐸0, it yields the 

Jacobian matrix: 

𝐽 = |

−𝑝 (𝑝 + 𝑦3) 𝑦2
(𝑞 − 𝑦3) −1 −𝑦1
𝑦2 𝑦1 −𝑟

|.   (9) 

The eigenvalues can be determined by solving the 

following cubic equation: 

𝜆3 + (1 + 𝑝 + 𝑟)𝜆2 + (𝑝(1 + 𝑟 − 𝑞 + 𝑦3) − 
𝑞𝑦3 + 𝑟 + 𝑦1

2 − 𝑦2
2 + 𝑦3

2)𝜆 + 𝑝(𝑟 − 𝑞𝑟 + 𝑦1
2 

+𝑦1𝑦2 + 𝑟𝑦3) + 𝑟𝑦3
2 − 𝑞𝑟𝑦3 − 𝑞𝑦1𝑦2 − 𝑦2

2 + 
2𝑦1𝑦2𝑦3 = 0.      (10) 

For the centrally located equilibrium point 𝐸0(0,0,0)and 

parameters values𝑝 = 10, 𝑞 = 28 and 𝑟 = 8/3, 

Equation (9) yields eigenvalues of: 𝜆1 =
−22.8277, 𝜆2 = 11.8277,  𝜆3 = −2.6667. Looking at 

these eigenvalues, it is clear that the equilibrium point 

of Equation (2) is an unstable saddle point (Woolf, 

2009). 

 

Synchronization of the Financial Systems 

The complete synchronization, the anti-synchronization 

and the hybrid synchronization of the financial systems 

are investigated in this section, using the active control 

method. Equation (1) is taken as the master system 

while Equation (2) is taken as the slave system which 

can be expressed in the form: 

{
𝑦̇1  = 𝑝(𝑦2 − 𝑦1) + 𝑦2𝑦3 + 𝑢1
𝑦̇2  =  𝑞𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑢2
 𝑦̇3 = 𝑦1𝑦2 − 𝑟𝑦3 + 𝑢3,

   (11) 

where 𝑢1, 𝑢2 and 𝑢3 are the active controllers to be 

designed. 

 

Complete Synchronization 

The complete synchronization error is defined by 

𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖 , (𝑖 = 1,2,3).      (12) 

Then, the complete synchronization error of Equation 

(1) and Equation (11) is obtained as 

( ) ( )

( )

( )

( )

( )

( ) ( )

1 2 1 2 3 2 1

3 3 2 2 3 1

2 1 2 1 3 3 1 1

2 2 1 1 3 2

3 1 2 3 2 2 1

1 2 3 3

( ) ,

1 ,

.

( )

e p e e e e a p x x

p e x x e f x u

e qe e e e e q hx x

bx x e x x u

e e e re e g x x

e d x r c x u



= − + + − − +


+ + + − +


= − − − − − −


− − + − +
 = − + + + +

 + − − +

 (13) 

The nonlinear active control law for 𝑢𝑖, (𝑖 = 1,2,3) 
should be constructed in such a manner that the error 

dynamics Equation (13) is globally stable. 

Choosing the control function 𝑢 = [𝑢1, 𝑢2, 𝑢3]
𝑇 as 

( )

( )

( )

( )

( )

( ) ( )

1 2 3 2 1

3 3 2 2 3 1

2 1 3 3 1 1

2 2 1 1 3 2

3 1 2 2 2 1

1 2 3 3

,(

.

(1

)

,)

u e e a p x x

p e x x f e x v

u e e e q hx x

bx x e x x v

u e e e g x x

e d x r c x v



= − − −


+ + + − +


= + − − +


− + + + +
 = − − + + −

 + −

− −

+ +

   (14) 

where 
1,v 𝑣2 and 𝑣3 are the linear control input chosen 

such that Equation (13) becomes stable. 

Substituting Equation (14) into Equation (13) yields 

{
𝑒̇1 = 𝑝(𝑒2 − 𝑒1) + 𝑣1,
𝑒̇2 = 𝑞𝑒1 − 𝑒2 + 𝑣2,
𝑒̇3 = −𝑟𝑒3 + 𝑣3.

      (15) 

Let us consider 

𝑣 = [𝑣1, 𝑣2, 𝑣3]
𝑇 = 𝑀[𝑒1, 𝑒2, 𝑒3],    (16) 
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where 𝑀is a 3 by 3 constant matrix. For stability, the 

matrix 𝑀 is selected in such a way that all of its 

eigenvalues are with negative real parts. Consider the 

following choice of matrix 𝑀as 

𝑀 = |
𝑝 − 1 −𝑝 0
−𝑞 0 0
0 0 𝑟 − 1

| ;   (17)  

then,  

|𝑣1, 𝑣2, 𝑣3| = |
𝑝 − 1 −𝑝 0
−𝑞 0 0
0 0 𝑟 − 1

| |

𝑒1
𝑒2
𝑒3
|,  (18) 

leads to 

{

𝑣1 = (𝑝 − 1)𝑒1 − 𝑝𝑒2,
𝑣2 = 𝑞𝑒1,
𝑣3 = (𝑟 − 1)𝑒3.

      (19) 

Hence, Equation (1) and Equation (11) will achieve 

complete synchronization when the nonlinear active 

control is chosen as 

( )

( )

( )

( )

( ) ( )

1 1 2 2 3

2 1 3 3 2 2 3

2 1 1 3 3 1 1

2 2 1 1 3

3 3 1 2 2 2 1

1 2 3

( 1)

) ,

1 ,

( )

(

(

.

( )

1

)

u p e pe e e a p

x x p e x x f e x

u qe e e e q hx x

bx x e x x

u r e e e e g x x

e d x r c x



= − − − − −


+ + + −
 = − + + − − +


− + + +
 = − − − + + −

 + + −

−

−

   (20) 

Proof: Based on the Lyapunov second method, we 

construct a Lyapunov function: 

𝑉(𝑒1, 𝑒2, 𝑒3) =
1

2
∑𝑘𝑖𝑒𝑖

2.      (21) 

By calculating the derivative of 𝑉(𝑡) along the 

trajectories of the error system, 

𝑉̇(𝑡) = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3.    (22) 

Using Equation (20) in Equation (13) and then in 

Equation (22) gives 

𝑉̇(𝑡) = 𝑒1(−𝑒1) + 𝑒2(−𝑒2) + 𝑒3(−𝑒3), 
𝑉̇(𝑡) = −𝑒1

2 − 𝑒2
2 − 𝑒3

2, 

𝑉̇(𝑡) < 0.      (23) 

As the time,𝑡, tends to ∞, the error function tends to 

zero; that is, the complete synchronization between 

Equation (1) and Equation (11) is achieved. This 

completes the proof. 

 

Anti-Synchronization 

The anti-synchronization error is defined by 

𝑒𝑖 = 𝑦𝑖 + 𝑥𝑖 , (𝑖 = 1,2,3).    (24) 

Then, the anti-synchronization error of Equation (1) and 

Equation (11) is obtained as 

{
  
 

  
 
𝑒̇1 = 𝑝(𝑒2 − 𝑒1) + 𝑒2𝑒3 − (𝑎 − 𝑝 − 𝑥2)𝑥1
−(𝑝 + 𝑒3 − 𝑥3)𝑥2 + (𝑓 − 𝑒2)𝑥3 + 𝑢1,

𝑒̇2 = 𝑞𝑒1 − 𝑒2 − 𝑒1𝑒3 − (𝑞 − 𝑒3 + ℎ𝑥1)𝑥1 +

(1 − 𝑏𝑥2)𝑥2 + (𝑒1 − 𝑥1)𝑥3 + 𝜏 + 𝑢2,

𝑒̇3 = 𝑒1𝑒2 − 𝑟𝑒3 − (𝑒2 + 𝑔 − 𝑥2)𝑥1 −

(𝑒1 + 𝑑)𝑥2 − (𝑐 − 𝑟)𝑥3 + 𝑢3.

   (25) 

The nonlinear active control law for 𝑢𝑖, (𝑖 = 1,2,3) 
should be constructed in such a manner that the error 

dynamics Equation (25) is globally stable. 

Choosing the control function 𝑢 = [𝑢1, 𝑢2, 𝑢3]
𝑇 as  

{
  
 

  
 
𝑢1 = −𝑒2𝑒3 + (𝑎 − 𝑝 − 𝑥2)𝑥1 + (𝑝 +

𝑒3 − 𝑥3)𝑥2 − (𝑓 − 𝑒2)𝑥3 + 𝑣1,

𝑢2 = 𝑒1𝑒3 + (𝑞 − 𝑒3 + ℎ𝑥1)𝑥1 − (1 − 𝑏𝑥2)𝑥2
−(𝑒1 − 𝑥1)𝑥3 − 𝜏 + 𝑣2,

𝑢3 = −𝑒1𝑒2 + (𝑒2 + 𝑔 − 𝑥2)𝑥1 + (𝑒1 + 𝑑)𝑥2
+(𝑐 − 𝑟)𝑥3 + 𝑣3.

 (26) 

where 
1,v 𝑣2 and 𝑣3 are the linear control input chosen 

such that Equation (25) becomes stable. 

Follow the same procedure as in subsection 3.1, then, 

Equation (1) and Equation (11) will achieve anti-

synchronization when the nonlinear active control is 

chosen as 

{
  
 

  
 
𝑢1 = (𝑝 − 1)𝑒1 − 𝑝𝑒2 − 𝑒2𝑒3 + (𝑎 − 𝑝 −

𝑥2)𝑥1 + (𝑝 + 𝑒3 − 𝑥3)𝑥2 − (𝑓 − 𝑒2)𝑥3,

𝑢2 = −𝑞𝑒1 + 𝑒1𝑒3 + (𝑞 − 𝑒3 + ℎ𝑥1)𝑥1 −

(1 − 𝑏𝑥2)𝑥2 − (𝑒1 − 𝑥1)𝑥3 − 𝜏,

𝑢3 = (𝑟 − 1)𝑒3 − 𝑒1𝑒2 + (𝑒2 + 𝑔 − 𝑥2)𝑥1 +

(𝑒1 + 𝑑)𝑥2 + (𝑐 − 𝑟)𝑥3.

 (27) 

Proof: Based on the Lyapunov second method, we 

construct a Lyapunov function: 

𝑉(𝑒1, 𝑒2, 𝑒3) =
1

2
∑𝑘𝑖𝑒𝑖

2.     (28) 

By calculating the derivative of 𝑉(𝑡) along the 

trajectories of the error system, 

𝑉̇(𝑡) = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3,     (29) 

and substituting Equation (27) in Equation (25) and then 

in Equation (29), one readily obtains  

𝑉̇(𝑡) = 𝑒1(−𝑒1) + 𝑒2(−𝑒2) + 𝑒3(−𝑒3), 
𝑉̇(𝑡) = −𝑒1

2 − 𝑒2
2 − 𝑒3

2, 
𝑉̇(𝑡) < 0.      (30) 

As the time,𝑡, tends to ∞, the error function tends to 

zero; that is, the anti-synchronization between Equation 

(1) and Equation (11) is achieved. This completes the 

proof. 

 

Hybrid synchronization 

The hybrid synchronization error is defined by  

𝑒1 = 𝑦1 − 𝑥1, 𝑒2 = 𝑦2 + 𝑥2, 𝑒3 = 𝑦3 − 𝑥3.   (31) 

Then, the hybrid synchronization error of Equation (1) 

and Equation (11) is obtained as 

{
  
 

  
 
𝑒̇1  = 𝑝(𝑒2 − 𝑒1) + 𝑒2𝑒3 + (𝑎 − 𝑝 − 𝑥2)𝑥1 −

(𝑝 + 𝑒3 + 𝑥3)𝑥2 − (𝑓 − 𝑒2)𝑥3 + 𝑢1,

𝑒̇2  = 𝑞𝑒1 − 𝑒2 − 𝑒1𝑒3 − (𝑒3 − 𝑞 + ℎ𝑥1)𝑥1 +
(1 − 𝑏𝑥2)𝑥2 − (𝑒1 + 𝑥1)𝑥3 + 𝜏 + 𝑢2,

𝑒̇3  = 𝑒1𝑒2 − 𝑟𝑒3 + (𝑒2 + 𝑔 − 𝑥2)𝑥1 −

(𝑒1 − 𝑑)𝑥2 − (𝑟 − 𝑐)𝑥3 + 𝑢3.

 (32) 

The nonlinear active control law for 𝑢𝑖, (𝑖 = 1,2,3) 
should be constructed in such a manner that the error 

dynamics Equation (32) is globally stable. 

Choosing the control function 𝑢 = [𝑢1, 𝑢2, 𝑢3]
𝑇 as 



Complete Synchronization…  Oyeleke et al., NJTEP2024 2(2): 125-137 

130 

NIGERIAN JOURNAL OF THEORETICAL AND ENVIRONMENTAL PHYSICS 

{
  
 

  
 
𝑢1 = −𝑒2𝑒3 − (𝑎 − 𝑝 − 𝑥2)𝑥1 + (𝑝 + 𝑒3 +

𝑥3)𝑥2 + (𝑓 − 𝑒2)𝑥3 + 𝑣1,

𝑢2 = 𝑒1𝑒3 + (𝑒3 − 𝑞 + ℎ𝑥1)𝑥1 − (1 − 𝑏𝑥2)𝑥2
+(𝑒1 + 𝑥1)𝑥3 − 𝜏 + 𝑣2,

𝑢3 = −𝑒1𝑒2 − (𝑒2 + 𝑔 − 𝑥2)𝑥1 + (𝑒1 − 𝑑)𝑥2
+(𝑟 − 𝑐)𝑥3 + 𝑣3,

 (33) 

where 
1,v 𝑣2 and 𝑣3 are the linear control input chosen 

such that Equation (32) becomes stable. 

Follow the same procedure as in subsection 3.1, then, 

Equation (1) and Equation (11) will achieve hybrid 

synchronization when the nonlinear active control is 

chosen as 

{
  
 

  
 
𝑢1 = (𝑝 − 1)𝑒1 − 𝑝𝑒2 − 𝑒2𝑒3 − (𝑎 − 𝑝 −

𝑥2)𝑥1 + (𝑝 + 𝑒3 + 𝑥3)𝑥2 + (𝑓 − 𝑒2)𝑥3,

𝑢2 = −𝑞𝑒1 + 𝑒1𝑒3 + (𝑒3 − 𝑞 + ℎ𝑥1)𝑥1 −

(1 − 𝑏𝑥2)𝑥2 + (𝑒1 + 𝑥1)𝑥3 − 𝜏,

𝑢3 = (𝑟 − 1)𝑒3 − 𝑒1𝑒2 − (𝑒2 + 𝑔 − 𝑥2)𝑥1
+(𝑒1 − 𝑑)𝑥2 + (𝑟 − 𝑐)𝑥3.

    (34) 

Proof: Based on the Lyapunov second method, we 

construct a Lyapunov function: 

𝑉(𝑒1, 𝑒2, 𝑒3) =
1

2
∑𝑘𝑖𝑒𝑖

2.     (35) 

By calculating the derivative of 𝑉(𝑡) along the 

trajectories of the error system, 

𝑉̇(𝑡) = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3,                          (36) 

and substituting Equation (34) in Equation (32), and 

then in Equation (36) one readily obtains  

𝑉̇(𝑡) = 𝑒1(−𝑒1) + 𝑒2(−𝑒2) + 𝑒3(−𝑒3), 
𝑉̇(𝑡) = −𝑒1

2 − 𝑒2
2 − 𝑒3

2, 
𝑉̇(𝑡) < 0.     (37) 

As the time, 𝑡, tends to ∞, the error function tends to 

zero; that is, the hybrid synchronization between 

Equation (1) and Equation (11) is achieved. This 

completes the proof. 

 

RESULTS AND DISCUSSION 

Numerical simulations are performed by the ODE45 

algorithm embedded in MATLAB software package to 

establish the designed controller's effectiveness and 

feasibility. The initial conditions (𝑥1, 𝑥2, 𝑥3)  =
(1, −3, 5) for the master system; and (𝑦1, 𝑦2, 𝑦3) = 

(−5,2,1) for the slave system. 

 

Complete Synchronization of Non-Identical 

Financial Systems 

The complete synchronization of Equation (1) and 

Equation (11) is achieved using the controller in 

Equation (20).  

 

 
Figure 3: Time series of Equation (1) and Equation (11) in the absence of the controller 

 

Figure 3 illustrates how state variables move chaotically 

with time when the controller is deactivated, 

demonstrating that these systems depend sensitively on 

initial conditions in the absence of the controller - a 

significant characteristic of a chaotic system. 
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Figure 4: Time series of Equation (1) and Equation (11) when the controller is activated 

 

Figure 4 illustrates how the system becomes asymptotically stable when controllers are activated. 

 

 
Figure 5: (a) Error dynamics between Equation (1) and Equation (11) in 

the absence of the controller. (b) Error dynamics between Equation (1) 

and Equation (11) when the controller is activated. 
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In Figure 5a, it can be seen that the variable errors do 

not synchronize with time in the absence of the 

controller but do so at 𝑡 ≥ 5.5when the controller is 

activated, as depicted in Figure 5b. This is confirmed by 

the synchronization quality, 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

√𝑒1
2 + 𝑒2

2 + 𝑒3
2shown in Figure 6. 

 
Figure 6: Synchronization quality between Equation (1) and Equation (11) 

 

Anti-Synchronization of Non-Identical Financial Systems 

The controller in Equation (27) is used to achieve the anti-synchronization of Equation (1) and Equation (11). When 

the controller is deactivated, state variables evolve chaotically over time as seen in Figure 7. 

 

 
Figure 7: Time series of Equation (1) and Equation (11) in the absence of the controller 

 

When controllers are activated, the system asymptotically stabilizes, as depicted in Figure 8. 
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Figure 8: Time series of Equation (1) and Equation (11) when the controller is activated 

 

 
Figure 9: (a) Error dynamics between Equation (1) and Equation (11) in the 

absence of the controller. (b) Error dynamics between Equation (1) and 

Equation (11) when the controller is activated 

 

Also from Figure 9a, it can be seen that the variable errors do not synchronize with time in the absence of the 

controller but do so at 𝑡 ≥ 5.5when the controller is activated, as depicted in Figure 9b. The synchronization quality 

𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = √𝑒1
2 + 𝑒2

2 + 𝑒3
2, displayed in Figure 10, validates this. 
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Figure 10: Synchronization quality between Equation (1) and Equation (11) 

 

Hybrid Synchronization of Non-Identical Financial Systems 

The hybrid synchronization of Equation (1) and Equation (11) is achieved by the controller in Equation (34). 

 
Figure 11: Time series of Equation (1) and Equation (11) in the absence of the controller 

 

As demonstrated in Figure 11, state variables change chaotically over time when the controller is deactivated. In 

Figure 12, the system asymptotically stabilizes when controls are activated. 

 
Figure 12: Time series of Equation (1) and Equation (11) when the controller is activated 
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Figure 13: (a) Error dynamics between Equation (1) and Equation (11) in the 

absence of the controller. (b) Error dynamics between Equation (1) and Equation 

(11) when the controller is activated 

 

Also from Figure 13a, it can be seen that the variable errors do not synchronize with time in the absence of 

controllers but do so at 𝑡 ≥ 4.8when the controller is activated, as depicted in Figure 13b. This is verified by the 

synchronization quality 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = √𝑒1
2 + 𝑒2

2 + 𝑒3
2, which is shown in Figure 14. 

 
Figure 14: Synchronization quality between Equation (1) and Equation (11) 
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CONCLUSION 

In this paper, the chaos synchronization of two non-

identical finance systems is examined. The complete 

synchronization, the anti-synchronization and the hybrid 

synchronization are achieved via active control 

techniques. The linear system theory and Lyapunov 

second method are the two analytical approaches used 

to achieve the stability of error dynamics in each case. 

Also, relevant variables from the response and the drive 

systems are used to construct the controllers. The 

viability of the developed controllers is demonstrated 

through numerical simulations. Consequently, chaotic 

financial systems can be synchronized and stabilized by 

using a combination of various financial market 

indicators as a control. 
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