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ABSTRACT

Dynamical behaviors of 3D Jerk system were examined in terms of equilibrinm,
stability, dissipative, and phase space attractor in this study. The system’s practical
applications were demonstrated through circurt realization and synchronization
scheme wvia active backstepping control with its effectiveness demonstrated in
secure communication. The viability of the theoretical model of 3D Jerk system was
confirmed vsing electronic circuit workbench designed in MultiSIM enviroment A
nonlinear feedback controller was designed using the recurzive backstepping
technique to control and track a desire function. For secure communication
application, active backstepping method was adopted to synchronize two identical
chactic systems evolving from different initial conditions. It was demonstrated that
when the controller was activated, the systems synchronize successfully. The results
of the active backstepping designed controllers were numerically applied in the area
of secure communication, with the variable of the drive being encrypted
information transmitted through a coupling channel Using an additive encryption

Eevwords: masking scheme, the encrypted signal was a superposition of sinusoidal information
Chaos, specified by period function and chaotic carrier generated from a variable of the
Control, Jerk zystem. The transmitted information signal was successfully retrieved from the
Synchronization, chactic response zignal using an inverse funetion decryption algorithm thereby

Secure communication. confirming the effectiveness and robustness of the designed controller.

INTRODUCTION

Chaotic dynamics in nonlinear science 15 characterized
by unpredictability, irregularity, sensitive tfo initial
conditions and parameters variation (Otti, 2002; Liu &

in the literature of the chaos dynamics through the
pioneering work of Pecora and Carroll (1990) on the
chaos synchronization. Thiz great breakthrough revealed
the potential application of chaos synchronization in

Zhu, 2008).

Becently, nonlinear chaos has becomes a hot topic of
research among the scientists, engineers and economists
as a result of it application in secure communication,
signal processing. random generator. power comverter,
high performance circuit design for telecommunication
{Chua, 1998; Chua & Roska 2002; Fortuna, Franca &
Xibilia, 2009), biomedical engineering application,
physical, chemical, biclogical (Strogatz, 19904) and
financial systems (Kyrtzou & Labys, 2006; Kyrtzsou &
Labys, 2007; Idowu &f al, 2018).

Since chaotic dynamics is unpredictable az well as
zensitive to inttial conditions, the idea to control and
synchronizes the chaotic systems has been considered
illogical. The year 1990 recorded a major breakthrough
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various physical and real world systems.

Chactic phenomena could be beneficial in szome
applications and undesirable in many systems. such as;
engineering,  economic activities and many other
phyzical systems Therefore the ability to coatrol or
tranzform chaotic behavior iz highly of advantage to
several fields to improve the zystems performance.
Chaoz control iz to stabilize a known unstable periodic
orbit at the equilibriuvm point or to track any defined
function #({f) at any chosen position where as
synchronization on the other hand i1s the linking or
coupling of one system trajectories to the corresponding
trajectories of the other system such that both systems
remains in step (cooperate) with each other throughout
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the transmission of signal (MNjah, 2009; Onma ef al,
2014; Onma ef al., 2017a).

Numerons methods have been developed and employed
to achieved chaos control and synchronization Among
the methods are; active control (Bai & Longngren,
{1997); Sarasu & Sandarapandian 2011a; Sarasu &
Sandarapandian, 2011b; Vincent 2008), adaptive
control (Yassen, 2003; Wang & Wang, 2011); El-
Dessoky & Yessen, 2012; Onma ef al, 2016; Tirandaz
& Hajipour, 2017; Idowu, 2019; Onma e al, 2021),
backstepping technique (Mascolo, 1997; Laoye ef al,
2009; Njah, 2009; Olusola ef al, 2011; Onma ef al,
2014; Onma ef al, 2017a), sliding meode control
{Medhafar et al.. 2019; Rajagopal, 2017).

In engineering community. great attention has drawn on
circuit realization of a chaotic system Circoit
realization iz important in implementation of the system
in  real-world application in  chaos  scheme
communication technologies and information systems
(Kemih ef al, 2015; Pham e&f ol 2015; Idown ef al,
2018; Vaidyanathan ef al, 2018; Sambas ef al, 2019;
Adelaja ef al, 2021). As a result, thiz paper analyses
and prezents the circuit realization of Jerk 3D system.
Secure communication is one of the major motivating
factors of chaos synchronization application. The
principle of chaos application in secure communication
scheme i3 by using a chaotic oscillator as a broadband
zignal generation. The chaotic signal i3 mixed with the
information signal to produce unpredictable signal
which iz transmitted from the drive to the response (Li
ef al, 2003; Adelalun ef al, 2014; Onma &f al., 2017a;
Ounma ef al, 2017k).

Synchronous chaotic communication technology is
gropped into: chaotic masking technology, chaotic
parameter modulation technology and chaotic keving
technology. Chaos masking technology is an analog
communication (Adelakun ef al, 2014; Onma ef al,
2017a; Onma e al, 2017b), chacs parameter
moduolation and chaoz keying technology are digital
communication technology (Yau et al, 2012; Laoye ef
al, 2021, Adelaja ef al, 2021). Thiz research work
gives the details description of commmunication scheme
via active backstepping synchronization in analog
communication system.

In light with various applications of chaotic systems; the
investigation, control and synchronization behavior of
Jerk chaotic system i3 of great importance. The present
work is aimed on; the qualitative properties of Jerk
zystem such as stability, dissipation, equilibra, vastable,
attractor, time evolotion, circuit designed, tracking
control, active backstepping nonlinear control feedback
function that able to synchronizing two identical chaotic
Jerk systems evolving from different initial conditions

Adelaja et al.
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and itz application to secure communication. The
synchronization based on this technique iz simple
robust and easy to implement in real applications in
secufe commumnication.

MATERIALS AND METHODS

Model Description

The nonlinear zystem considered here iz Jerk 3D chaotic
system which iz the szet of ordinary differential
equations defined in equation (1).

=y

=1z

Z=—x—y—az— hx’ (1)
Equation (1) is a three-dimensional avtonomous

nonlinear Jerk system with one quadratic term and two
positive constant parameters a and bwhile x,y and z €
R™are the state variables of the system.

Methods

Numerical method and experimental study (electronic
implementation) were adopted for the study of dynamics
of Jerk system dezcribed by eguation (1). The electronic
implementation was carried out to walidate the
theoretical'numerical analysis. The dynamics of the Jerk
system asz stated in equation (1) was analyzed through
graphical representation of the system evolution in the
phase space, that is, the orbits in the space of the system
variables. The Fourth- Order Runge-kutta algorithm was
adopted to perform the numerical integration of the
model as described in equation (1) in order to study the
phase plane of the model and also to design the
controllers in order to achieve synchronmization of
models nsing Active Backstepping Scheme. Electronic
implementation of Jerk system was established using
simple OP-AMP's and other appropriate electronic
components such as resistors, capacitors and operational
amplifiers. The system (1) iz designed wvsing Multisim
program.

RESULTS AND DISCUSSION

Numerical results, experimental realization of
dynamical analysiz of Jerk 3D chaotic system are
presented. The experimental analysis was simulated on
Multisim (workbench) and thereafter. correlation
between aumerical and experimental resnlts was further
considered.

Phase Portraits Analysis

The plots of attractors are presented to show the chaotic
nature of the Jerk model Setting parameters o = 0.5
and b = 0.125 for system (1) exhibits complex chaotic
behavior attractor displayed in Figure 1.
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Figure 1: Phase space attractor of Jerk chaotic system with parameter values a = 0.5and b = 0.125

Dwynamical analysis of Jerk 3D chaotic system
Dissipative
The divergence of the Jerk 3D chaotic system (1) could
be obtained from equation (2) below:
di ax 3%
PV = a—xi + ﬁ + .‘:l_x:
FV=—(a)=-05
According to the range of the system parameter, —0.3 <
0. Thus Jetk 3D chactic system (1) iz a dissipative
gystem. All the orbit of thiz system converges to a
gpecific subset of =zero az t— OO0 exponentially.
Hence V() = Voo~ (®5”, which means for an initial
volume Vy, the volome will become Ve ™01 at instant
t through the flow by the svstem (1). Thues, there exists
an attractor in system (1) as shown in Figure 1 above.

(2)

Egquilibrinm and Stability

The equilibrium of system (1) satisfies these;

¥y = 1]

z=0

—x—y—az—bx*=0 (3)

By linearizing equation (3) at the equilibrium point

0
E, = [ﬂ] for all the parameter values, the Jacobian
0

matrix is given as:

0 1 0
[ 0 0 1 = Jr':p,u_-;]] ':4]
-1 -1 -05

In order to compute the eigenvalues of the equation (4),
equation (3) iz introduced as follow;

A — Jol=0 (5)

Hence, from equation (3), equation (4) iz transformed as
shown in equation (8).
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I | 0
[ 0 =3 1 ] =0 (6)
2 = e DE—=1)

The characteristics equation of Jacobian system (6) is
given in equation 7).

(4037 +i+1)=0 (N

The eigenvalues of equation (6) at equilibrivm point

1]
E, = [{I}m’e calculated nsing MATLAE as:
0
Ay =—-0.80376,4,; = 0.15188 + 1.10503i

In a continuvons nonlinear dynamical system_ the
condition for stability iz that all the eigenvalues and
Lyapunov exponents must be negative.

Obviously,
0
Eo = g] i bt
Whenao = 0.5andbh = 0.125, the eigenvalues of
equilibrinm  Ep(0,0,0) ared; = —0.80376, 1;=

0.15188 + 1.10503iand 1; = 0.15183 — 1.10503i.
Then,
1]

0

On any initial condition on the negative vector (4, ), the
0
!
0
through the eigen-plane of this negative eigenvector (4,)
but any deviation along A, and A; (positive
eigenvectors) will canze expansion and the orbst will
become unstable result to a saddle point Physically,
these results bear that the Jerk system (1) can oscillate

chaotically and prohibit the exiztence of stable fixed
point in the zystem.

0
} iz a two-dimensional unstable saddle point.

orbit will converges to the equilibrivm point Ey = [
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Electronic Circuit Design

Here, the electronic circuit is dezigned to implement
Jerk 3D chaotic system (1). The state variables x, v and
zof system (1) are scaled in order capiure the attractors
in the dynamical range of operational amplifiers.
MultiSIM 14 software i3 vsed to design the circuitry
zhown in Figure 2.

The circuit comprizes of three channels to realize the
integration addition and substation of the state variables
x,y andz. The electronic components are resistors,
capacitors and operational amplifiers. Using Kirchhoff's

Adelaja et al.
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laws on the designed circuit, we have eguation (8)
below.

dve, 1
TR T e
Ve, 1
=—Ve
it C.R
dve, 212V Ly Ly Lyl
dt . Cas 3 GaRy 2 GaRs 3 CaRg 3
(8)

. TLOB2CD

+We 1
+Ve 6
Tw
— 1av

I—'IJE_ 1

Figure 2: Electronic circuit design of Jerk chaotic system

The operational amplifiers uwse in this circoit are
TLOZ2CD and ADG33TN multipliers of which the power
supplies are +15volts. We set the values of the
circueital components as follow:

R =8~ R =R — =
Rg = Rip = Rj_j_ = R]_g = 10k12
R. = 20k0, R, = 8k (9)
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E]_ = C; = Cg = 10nF

By adopting the circuit designed technique, the results
obtained in Figure 3 dizplayed the various attractors of
the Jerk 3D chactic system (1) when a = 0.5 and b =
0.1250btained in MultiSIM 14. Obviously the obtained
oscilloscope results (Figure 3) confirmed the theoretical
result (Figure 1).
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Figure 3: MultiSIM Phase space attractors of Jerk chaotic system (1); (a)
x — y plane, (b) y — = plane and {c) x — = plane
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Robust Controel

Recursive Backstepping Tracking Control

Here, the robust control is demonstrated via recursive
backstepping technique to control the state variables
x,y and zof the Jerk 3D chaotic system (1) to track a
desire smooth function +(t) at any chosen position.

The first step is to design a controller u; () (i = x,y.2)
by adding the control funetion u; () to equation (1).

_y';:}r-|-u,x
Y=z+uy (1
i=—x—y—az—bx® +u;

The desire valne of the state variables x,v and zare
chosen to be x*, v and z° in order.

The error dynamics between the state variables (x.v
andz) and the desire values iz illpstrated in equation

(11):
g, =x—x"
g}_:J:l—}." I:ll::l

g, =2 —%
In order to design a general conmtrol laws wu;(t) (i =
x, yandz) that can control equation (10) to track any
trajectory r(t) that iz a smooth fonction of time, the
destred values iz chosen in equation {12) below.
x* =r(t)
¥ =aye,
" = @iy + a8y
where @; (i = 1,2,3) iz the control scaling factor to be
estimated.
The substitution of equation (12) into equation (11) and
differentiating the result give the error dynamics in
equation (13):
8y = 8y T oy, — F(E) tu,
gy = @z + 028y + @38y — @1dy + Uy
g, = —(gx + r[t)} - {9}. + a.lex}

= ul[ax + a8, + age}.} -
b(e; + 1)) — @z, — azéy +u, (13)
In order to stabilize the error dynamics system (13), the
Lyapunov function is defined as follows;

(12

V==2(el+el+ef) (14
The time derivative of the equation (14) 1s:
V=eé, +e,8 +eé, (15)

To satizsfy the condition for asymptotic stability of the
error vector (13) that iz necessary for tracking, V =
— Y kief < 0.

Adelaja et al.
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Therefore, the coatrol function w;(t) (i = x,v.2) is
estimated from equation (13) as shown below.

Uy = —gy — @18y + F[E) — kxex

Uy = —8; — G28y — Qg8 — Kyey

Uy =@, +7r(f) +e, +taye, +ale; + aze, +ae,) +
b(e, +r(t))° - ke, (16)

The substitution of equation (13} and (16) respectively
into equation {15) yield;

V = —keel —kyel —keef<0 (17)

At any equilibrivm point, system (1) must have ¥~
=0 (18

Therefore, at the equilibrium point;

0
E;=0= [U} (19
0
And
0y 0
-]}
(f) 0

These mean thaty” = z° = 0 from eguation (12) which
agreed with equation (18).

Hence, the control function in equation {16) reduces to;
Uy = —@y + (1) — ko,

Uy = —8; — k8, (21)

Uz =gy +7(f) + ey +az + blex +r(t))* — ke

Numerical Simulation

To demonstrate the effectiveness and the feasibility of
the proposzed scheme, Runge-Kutta algorithm of fourth-
order is used in the simulation with the initial conditions
as follows; (x.y.2)=(-1.0,1.83.0), a time step
of0.001and the parameter values of @ and b as in Figure
1 are fixed to ensure chaotic dynamics of the state
variables. System (10) iz solved with the controllers
u;(8) (i =1, 2, 3) as defined in (21) with the values of
the control gain feedback comstant as k, = 1.0, k, =
k; = 8.0.The results showed that the state variables
move chaotically with time when the controller is
deactivated and when the controller is switch on at time
t = 50 the state variables are conmtrolled to track the
desired functions #(t) = 2C0s0.8%. From the results of
the numerical simulations shown in Figure 4, we
obzerved that the controllers (21) iz capable of
controlling the dynamics of the chaotic system (10) to
track any desired smooth function, r(t) and to stabilize
it at any position P (case r(t) = P) and when P = ( the
system becomes stabilized at the origin.
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Figure 4: Recursive backstepping tracking control of chaotic Jerk system for »(£) =
2Cos0.8t when the controller is activated at £ = 30
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Active backstepping Synchronization for tweo identical
chaetic Jerk systems

To investigate the wvalidity of the above method, a
procedure via active backstepping technique as drive
(master) and response (slave) to szynchronize two
identical Jerk chaotic svstems was designed.

Design of the Active backstepping controller
From equation (1), we letx = x;, ¥ = x, and z = x; as
follows;

i =X,
Xy = Xy (22)
X3 = —x; —x; —axy — bxi

The system (22) above is the drive (master) or
transmitter and the following equation is the response
{slave) or receiver.

¥1 =y +ua(t)

¥2 = ¥ + ua(t) .

Y2 = —¥ — ¥2 —ays — by +ug(t)
Where wu;(t)(f = 1,2,3) are the nonlinear control
functions to be determined for the synchronization of
the systems (277 and (23).

The subtraction of equation (23) from equation (27}
nsing the following notations &; = y; —x; of ¥; = ¢; +

(23)

x; gives the error vector (24).

6; =g+ 1y

€, = @y + U 24)
By = —@; — @; — 8y — 2xy8,b — bef +u,

The main objective here is to design the control function
u;(t) to synchronize equations (22) and (23) as well as
to stabilize the error vectors (24) at the origin at any
choosing time.

The first equation in equation (24) is firstly stabilize by
regarding e¢; az a coatroller and comsidering the
quadratic Lyapunov fonction ¥y (8) = % ef of which the
time derivative gives equation (23).

Vi = e;é; = ey[e; +uy] (23)

The virtual controller e; iz estimated as; ez = @y (e,
then equation (25) becomes; Vi = e [a;(e;) + u,], if
@i(es) = —e; and u; =0, then i:’l = —ef negative
definite.

The errorw; between e; and &, (e,) 13 defined as;

Wy = 8z — ay(ey) (26)

foy =8 —(—e)=e;t+e @7

The substitution of é; and &, from equation (24) above
itito the time derivative of equation (27) yvields equation
(28) below.

Cr'.i': =gz 4+ &; + uz I:EE::I

Then, we stabilize (e,, w,) subsystem given in equation
{24) by chosen the Lyapunov functionV,(e;.w,) =
(es) + %mf . Differentiating 17, along the trajectory of
error vector (24), gives equation (29).
Valey ws) = v1(e) + wydbs

From equations (23) and (27),

(2%)

Adelaja et al.
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y(ey) = —ef + waey (30)

o l?g[:ﬂi_.ﬂ.llg} = _Ejz_ + woey + O.IIQ[SQ + 22+ u:] (_31)
Substitution for o, from equation (27) in (31) zives;
I:’g = —ef + waleg +ws + uz]. If ey is estimated as
@o(ey, ws) =0 and uy = —2w,, then Vo = —ef —wl
{negative definite), (ey,cw2) subsystem is stabilize.
Finally, the complete system is stabilize by regarding
wy a3 the error between g3 and az(eq, w2

thy = 63 — az(ey, wy) = &y (32)
Substituted ¢, and e; from equations (24) and (32)
respectively into the time derivative of equation (32)
resulting in equation {33);

Gy = —twp — aedy — bey (2x; + 8y + ug

(33)

Choosing the Lyapunov function V(e o, wg) =
vz(ey, wy, wg) + lﬁu% and differentiating gives equation
(34).

Val(ey wz ) = Pa(8y, @) + wady (34)
Hence,

Vo= —ef — ol + wy[—ty —awy —be, (2%, +8,) +
uz] (33)

If wug(t) is measurable as; u; = be, (2x; + &) + @y ,
then;

V: = —ef — w? — gwi (Negative definite, since a = 0).
Clearly, the derivative of V; (i = 1,2,3) iz negative
definite, thus one can conclude that the synchronization
error vector g;(t) in equation (24) iz globally stable also
the synchronization between systems (22) and (23) is
achieved with the designed control function defined in
equation (36).

uy =0

ﬂ-: s _zﬁ'hl: '[:36}

Uz = &Sifle + Fi::l + g

Numerical Simulations for Designed Active

backstepping controller

Using the Runge-Kutta fourth-order algorithm with the
initial conditions of the drive and response
systems{x;, X5, x5) = (0.1,0.2,0.1) and (v, ¥ ¥2) =
(0.3.0.1, —0.9) respectively with a time step of 0.001
and fixing the valuez of the parameters a and bas in
Figure 1 to ensure complex chaotic dynamics of the
state variables, systems (22) and (23) were solved with
the control function defined in equation (36).The results
of the simulation displays the states trajectories of the
drive (master) and the response (slave) systems (22) and
{23} in Figure 3 and the error dynamical system (24) in
Figure 6 while Figure give the nomm of
synchronization. The errors dynamic move chaotically
with time when the controller iz switch off and when the
controller iz switch on at t = 50 (Figure 6), the errors
vector converges to zero, thereby guaranteeing the
synchronization of systems (221) and (23) (Figure €).
This confirmed by the synchronization norm e given by

)

e=.ef +ef+e]

NIGERIAN JOURNAL OF THEORETICAL AND ENVIRONMENTAL PHYSICS
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Figure 5: The time response of the state variables for master system (22) and the slave system
(23) when the controller is activated at £ = 50
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Figure 6: Error dynamics between the drive system (22) and the responsze system (23)
when the controller is switched on at £ = 50
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Figure 7: Synchronization Norm

Secure Communication

Cryptography iz the science of protecting the privacy of
information during transmission of saved for long time
has aszumes special attention in modern information
zystem.

Chactic cryptography iz found applicable in image
encryption, neural networking, secuse communication
and economics (Yau ef al, 2012; Laoye of al, 2021,
Adelaja ef al, 2021).

Figure 8 display analog communication scheme base on
active backstepping synchronization in which four main
components are included: information signal chaotic
encryption zignal, chaotie decryption signal and
decryption efror signal.

In thiz method, we achieved the encryption by adding
the information signal to the chaos wave signal carrier
via additive routine. The information signal i(t) is
presented in equation (358).

i(t) = 3sin0.04¢ (38)

65

G0 100

The encrypted information iz masked with the chaos
wave carrier x; as shown in equation (39).

i (8) = i(t) + 23 {(39)

The decrypted information i;(t) iz extracted by the
inverse function shown in equation (40).

i2(t) = 1, (E) — ¥; (40)
Hence, the chaos wave signal x; of the master (drive)
system is transmitted to the slave (response) system by
coupling channel for synchronization between the drive
system and the response system. The information signal
i(t) = 3sin 0. 04tis remains masked in the encrypted
signals {,(f) and fransmitted to the receiver. The
decrypted information i3(t) was later extracted by
inverse function Once the difference between the
information signal i(t) and the decrypted signal id(t)
approaches zero, it means that the information is
recovered as shown in equation (41) below.

er = i(t) — id(£) (41)
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Figure 2: Jerk zystem masking communication; (a) information signali(f); (b) encrypted signali, (t); (e)

decrypted signali; (£); (d) decrypted signal iz (#) (=2500iz(¢) ; (e) decrypted error er =

CONCLUSION

This paper described the three-dimensional autonomous
nonlinear Jerk chaotic system with one quadratic term
and two parameters a and b. The system displays
complex dynamical behavior az confirmed by the
theoretical model and circuital implementation. The
analytical results revealed that this system is dizsipative
with two dimensional vnstable saddle points. As for
engineering application electronic circuit designed in
Multism simuelaticn was achieved. The results of the
recorsive backstepping tracking control and active
backstepping  synchronization were effective for
tracking control and stabilization of the Jerk 3D chaotic
zystem. It was investigated that chaos synehronization is
equivalent to stabilizing the systems at the equilibrivm
point by  determiming a  spitable  feedback

NIGERIAN JOURNAL OF THEORETICAL AND ENVIRONMENTAL PHYSICS

67

i(t) —id(t)
controlleru; (t).The success of synchromization output
were extended to secure communication. The numerical
simulation results presented demonstrated the validity
and the effectiveness of the proposed scheme. Hence,
thiz scheme can be implemented in real applications
such as cryptosystem, encryption, nevral networks and
secure communication.
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