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ABSTRACT 

We investigate the thermo-magnetic properties of the Attractive Radial Potential 

(ARP) for a particle moving in two-dimensional non-relativistic Schrödinger 

equation subjected to an external magnetic field and Aharonov-Bohm (AB) flux. 

Analytical solution for the energy eigenvalues and wavefunctions were obtained 

in a closed form via the Nikiforov-Uvarov Functional Analysis (NUFA) method. 

We derived the partition function by analyzing the system as a canonical 

ensemble to obtain the expressions for the thermodynamic quantities which 

include the free energy, entropy, specific heat capacity and internal energy. Our 

results show a decrease in the energy spectrum when the AB flux and magnetic 

fields are increased. At low temperatures, specific heat capacity shows a peak 

anomaly, while Helmholtz free energy and entropy exhibit temperature 

dependence. We also observed that AB flux and magnetic field influence both 

magnetization and magnetic susceptibility and exhibit both paramagnetic and 

diamagnetic behavior. The findings provide valuable insights into in molecular 

physics applications. 

INTRODUCTION 

The various potential models with in the solution of 

wave equations is important in the study of physics, as 

their solutions provide essential imformation into 

physical systems and phenomena (Greiner 2000; 

Landau 1977; Schiff 1995; Dirac 1958; Louis et al., 

2018). The understanding of particle behavior under 

different conditions can be utilized through these 

solutions. Numerous potential models to study various 

physical interactions have been introduced and 

employed by researchers over the years (Abu-Shady & 

Fath-Allah 2023; Serrano et al., 2010). These potentials 

are dependent of inter-particle distance and specific 

potential parameters that govern the nature of the 

interaction (Khordad & Mirhosseini 2015). But, a 

limited number of these potential models, such as the 

harmonic oscillator potential, the Coulomb potential and 

Kratzer potential, can give exact analytical solutions 

(Servatkhah et al., 2020). Where exact solutions cannot 

be utilize for nonzero angular momentum quantum 

numbers, the Greene and Aldrich method approximation 

techniques (Greene & Aldrich 1976) or the Pekeris 

approximation (Pekeris 1934) are employed. To derive 

the equation for exponential type potentials in two-

dimensional system several analytical techniques have 

been utilized. These include the factorization method 

(Dong 2007; Ikot et al., 2020), the Nikiforov-Uvarov 

(NU) method (Nikiforov & Uvarov 1988), the 

asymptotic iteration method (AIM) (Çiftçi et al., 2005; 

Bayrak et al., 2007), the NU functional analysis 

(NUFA) method (Ikot et al., 2021), exact quantization 

rules (Qiang & Dong 2010; Serrano et al., 2011 ), 

supersymmetric quantum mechanics, and the extended 

Nikiforov-Uvarov (ENU) approach (Karayer 2020; 

Karayer et al., 2015). 

The Attractive Radial Potential (ARP), is one of the 

interesting potential model introduced by Williams and 

Poulios, (1993) given in the form:  
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𝑉(𝑟) =
𝑎0𝑒−2𝛼𝑟+𝑏0+𝑐0𝑒2𝛼𝑟

𝑒2𝛼𝑟(1−𝑒−2𝛼𝑟)2
   (1) 

Researchers have explored this exponential-type 

potential with four parameters under both relativistic 

and non-relativistic frameworks (Eshghi & Hamzavi 

2012). The bound-state solutions of these potential, as 

well as its quantum information measures such as 

information energy, Rényi entropy, and Tsallis entropy, 

and scattering phase shifts in higher dimensions has 

been explored from previous research (Okorie et al., 

2021). Notably, the Attractive Radial Potential (ARP) 

exhibit inter-dimensional degeneracy symmetry in the 

scattering phase shifts (Okorie et al., 2021). 

In quantum mechanics, the external fields have played a 

fundamental role to influence the energy spectra through 

the effects such as Zeeman splitting and the Stark effect 

(Ikot et al., 2020). The degeneracies or induce spectral 

shifts, significantly altering a system's behavior can be 

lift by these fields. Researchers recently explored the 

impact of magnetic and AB flux fields in various 

quantum systems, such as the position-dependent mass 

Schrödinger equations (Ikot et al., 2020), and diatomic 

molecules under Aharonov-Bohm (AB) flux and 

magnetic fields (Edet et al., 2020). It is of these 

developments that, this research investigates the 

influence of AB flux and magnetic fields on the 

Attractive Radial Potential (ARP) model. 

However, investigating the thermal and magnetic 

properties of quantum systems has attracted significant 

attention by researchers (Okorie et al., 2019; Okorie et 

al., 2020). Properties such as entropy, internal energy, 

free energy, magnetization, and susceptibility provide 

crucial insights into system behavior under different 

conditions. While previous studies have examined these 

properties for various potentials (Ikhdair & Falaye 

2014), there has been no comprehensive investigation of 

the impact of magnetic and AB fields on an attractive 

radial potential. 

In this work, we extend the study of the ARP model by 

investigating its thermo-magnetic properties influenced 

by magnetic field and AB flux field. Applying the 

Nikiforov-Uvarov functional analysis (NUFA) method, 

Closed-form solutions for the energy spectrum equation 

and the corresponding wavefunctions are derived. We 

further apply the energy spectrum to analyze the 

behavior of thermo-magnetic quantities, including the 

partition function, entropy, internal energy, free energy 

and specific heat capacity.,  

Solution of Non-relativistic Schrödinger equation with 

ARP model subject to AB flux and magnetic fields 

Let’s assume a non-relativistic system of particles to 

move on a plane under the effect of ARP subject to both 

external magnetic field and Aharonov-Bohm (AB) flux 

field, perpendicular to the plane. Then, the stationary 

Schrödinger equation to investigate the system in polar 

coordinates takes the form (Eshghi et al., 2017); 
𝑃⃗ 2

2𝜇
𝜓(𝑟, 𝜙) = [𝐸𝑛𝑚 − 𝑉(𝑟)]𝜓(𝑟, 𝜙)  (2) 

where 𝐸𝑛𝑚 denote the energy eigenvalue, 𝜇 represent 

the reduced mass. This work is aimed to study the 

physical characteristic of the system using ARP as given 

in Equation (1). Accordingly, with this assumption, the 

momentum operator for the charged particle needs to be 

altered, and we apply a minimal coupling of a four-

vector to the operator in the following manner:  

𝑃⃗ = (𝑖ℏ𝛻⃗ +
𝑒

𝑐
𝐴 )    (3) 

In order to incorporate both the magnetic and 

Aharonov-Bohm flux fields, the vector potential is 

written as a combination of two azimuthal terms.
 
𝛢 =

𝛢 1 + 𝛢 2 . Let’s assumed  

𝛢 1 = (
𝐵𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟) 𝜙̂    (4) 

This gives the external magnetic field only with the 

azimuthal component by the well-known formula𝛻⃗ ×

𝛢 1 = 𝛣⃗ . To indicate Aharonov-Bohm (AB) flux𝜑AB. 

We use  

𝛢 2 = (
𝜑𝐴𝐵

2𝜋𝑟
) 𝜙̂    (5) 

This satisfies the condition 𝛻⃗ × 𝛢 2 = 0and𝛻⃗ ⋅ 𝛢 2 = 0. 

Henceforth, the total vector potential can be expressed 

as reported by (Falaye et al., 2016; Edet et al., 2020) 

𝛢 = (0,
𝐵𝑒−2𝛼𝑟

(1−𝑒−2𝛼𝑟)
+

𝛷𝐴𝐵

2𝜋𝑟
) 𝜙̂  (6) 

For stationary Schrödinger equation to be solved the 

eigenfunction in the cylindrical coordinates is assumed 

using the ansatz; 

𝜓(𝑟, 𝜙) =
1

√2𝜋𝑟
𝑒𝑖𝑚𝜙𝑅𝑛𝑚(𝑟, 𝜙)  (7) 

where 𝑚 gives the magnetic quantum number and 𝜙is 

the azimuth angle. With equation (1), (3), (6) and (7) 

into equation (2). The radial second-order differential 

equation is obtained: 

𝑅″(𝑟) +
2𝜇

ℏ
2 [𝐸𝑛𝑚 − 𝑉𝑒𝑓𝑓(𝑟, 𝜔𝐵 , 𝜁𝐴𝐵)]𝑅(𝑟) = 0 

     (8) 

where 𝑉𝑒𝑓𝑓(𝑟, 𝐵, 𝛷𝐴𝐵) represent the effective potential, 

expressed as: 

𝑉𝑒𝑓𝑓(𝑟, 𝜔𝐵 , 𝜁𝐴𝐵) = 𝑉(𝑟) −
ℏ𝜔𝐵(𝑚+𝜁𝐴𝐵)𝑒−2𝛼𝑟

(1−𝑒−2𝛼𝑟)𝑟
+

(𝜇𝜔𝐵
2 )𝑒−4𝛼𝑟

2(1−𝑒−2𝛼𝑟)2
+

ℏ
2((𝑚+𝜁𝐴𝐵)2−

1

4
)

(2𝜇)𝑟2   (10)  

where 𝜁AB =
𝜑𝐴𝐵

𝜑0
, with 𝜑0 =

2𝜋ℏ𝑐

𝑒
=

ℎ𝑐

𝑒
;  𝜏 = −

𝑒

𝑐
, and 

𝜔𝐵 = −
𝐵𝜏

𝜇
 being the cyclotron frequency. To take care 

of centrifugal term we employed the Greene - Aldrich 

approximation scheme (Greene & Aldrich 1976), that 

valid only for small screening parameter𝛼.  
1

𝑟2 ≈
4𝛼2

(1−𝑒−2𝛼𝑟)2
;  

1

𝑟
≈

2𝛼

(1−𝑒−2𝛼𝑟)
  (11)
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Let consider coordinate transformation of the form𝑥 = 𝑒−2𝛼𝑟, to bypass the centrifugal term and performing some 

straightforward algebraic simplification, equation (8) reduced to: 

𝑑2𝑅(𝑥)

𝑑𝑥2 +
(1−𝑥)

𝑥(1−𝑥)

𝑑𝑅(𝑥)

𝑑𝑥
+

1

𝑥2(1−𝑥)2
[

−(𝜀𝑛𝑚 + 𝛿0 + 𝜂1)𝑥
2

+(2𝜀𝑛𝑚 − 𝛿1 − 𝜂0)𝑥

−(𝜀𝑛𝑚 + 𝛿2 + 𝜂2)

] 𝑅(𝑥) = 0    (12) 

The following dimensionless notation is introduced for simplification: 

𝜀𝑛𝑚 = −
𝜇𝐸𝑛𝑚

2ℏ
2𝛼2

, 𝛿0 =
𝜇𝑎0

2ℏ
2𝛼2

, 𝛿1 =
𝜇𝑏0

2ℏ
2𝛼2

, 𝛿2 =
𝜇𝑐0

2ℏ
2𝛼2

, 

𝜂0 =
𝜇𝜔𝐵(𝑚+𝜁𝐴𝐵)

ℏ𝛼
, 𝜂1 =

𝜇2𝜔𝐵
2

4ℏ
2𝛼2 , 𝜂2 = (𝑚 + 𝜁𝐴𝐵)2 −

1

4
      (13) 

To solve equation (12) we define the ansatz: 

𝑅(𝑥) = 𝑥𝜆(1 − 𝑥)𝜎𝑓(𝑥)         (14) 

The following dimension is used for the NUFA method as reported by Ikot et al. (2021)  

𝜆 = √𝜀𝑛𝑚 + 𝛿2 + 𝜂2         (15) 

𝜎 =
1

2
+ √

1

4
+ 𝛬𝛿 + 𝛬𝜂         (16) 

where 

𝛬𝛿 = 𝛿0 + 𝛿1 + 𝛿2;  Λ𝜂 = 𝜂0 + 𝜂1 + 𝜂2       (17) 

The energy eigenvalue for the ARP subject to magnetic and an AB field is derived as: 

𝜀𝑛𝑚 = −𝛿2 − 𝜂2 + [
𝛿0−𝛿2+𝜂1−𝜂2−(𝑛+

1

2
+√

1

4
+𝛬𝛿+𝛬𝜂)

2

2(𝑛+
1

2
+√

1

4
+𝛬𝛿+𝛬𝜂)

]

2

     

 

(18) 

Therefore, we substitute the values of the dimensionless parameters of equation (13) into equation (18); the solution 

of the ARP subject to magnetic and an AB flux field is obtained as: 

𝐸𝑛𝑚 =
2ℏ

2𝛼2

𝜇
((𝑚 + 𝜁𝐴𝐵)2 −

1

4
) + 𝑐0 −

2ℏ
2𝛼2

𝜇
[

𝜇

2ℏ
2𝛼2

(𝑎0−𝑐0)+
𝜇2𝜔𝐵

2

4ℏ
2𝛼2

−(𝑚+𝜁𝐴𝐵)2−
1

4
−(𝑛+𝛫̂)2

2(𝑛+𝛫̂)
]

2

  (19) 

where 𝛫 =
1

2
+ √(𝑚 + 𝜁𝐴𝐵)2 +

𝜇

2ℏ
2𝛼2

(𝑎0 + 𝑏0 + 𝑐0) +
2𝜇𝜔𝐵(𝑚+𝜁𝐴𝐵)

ℏ𝛼
+

𝜇2𝜔𝐵
2

4ℏ
2𝛼2    (20) 

In d-dimensional non-relativistic energy solutions when𝑚 = 0, where 𝑙is the rotational quantum number, equation 

(19) reduced to: 

𝐸𝑛𝑙 = 𝑐0 −
2ℏ

2𝛼2

𝜇
[

𝜇

2ℏ
2𝛼2

(𝑎0−𝑏0)−(𝑛+
1

2
+√(1+4𝜐)+

𝜇

2ℏ
2𝛼2

(𝑎0+𝑏0+𝑐0))

2

2(𝑛+
1

2
+√(1+4𝜐)+

𝜇

2ℏ
2𝛼2

(𝑎0+𝑏0+𝑐0))

]

2

    (21) 

where 

𝜐 =
(𝐷−1)(𝐷−3)

4
+ 𝑙(𝑙 + 𝐷 − 2)        (22) 

Equation (21) is similar with equation (15) of Okorie et al. (2021). 

The corresponding unnormalized wave function is obtained using equation (14), (15) and (16): 

𝑅𝑛𝑚(𝑥) = 𝑁𝑛𝑚𝑥√𝜀𝑛𝑚+𝛿2+𝜂2(1 − 𝑥)
1

2
+√

1

4
+𝛬𝛿+𝛬𝜂

× ( 𝐹2 1(−𝑛, 𝑛 + 2(𝜆 + 𝜎); 2𝜆 + 1; 𝑥))
  

(23)   

where 𝑁𝑛𝑚 gives the normalization constant and 𝐹2 1(−𝑛, 𝑛 + 2(𝜆 + 𝜎); 2𝜆 + 1; 𝑥) represent the hypergeometric 

function. 

 

Thermo magnetic Properties of ARP Model 

The thermo-magnetic properties of the ARP system are analyzed through the evaluation of its partition function. It is 

well established that, within the canonical ensemble framework, the partition function is obtained by summing over 

all possible vibrational energy levels accessible to the system (Servatkhah et al., 2020); 

𝑍(𝛽) = ∑ 𝑒−𝛽𝐸𝑛𝑚 , 𝛽 =
1

𝑘𝐵𝑇

𝑛𝑚𝑎𝑥∑
𝑛=0         (24) 

where 𝑘𝐵 = Boltzmann constant and T is absolute temperature, 𝐸𝑛𝑚  is the energy on the nth bound state. Equation 

(19) can take the form; 
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𝐸𝑛𝑚 = 𝛥1 −
2ℏ

2𝛼2

𝜇
[
𝛥2−(𝑛+𝛫̂)2

2(𝑛+𝛫̂)
]   (25) 

𝛥1 =
2ℏ

2𝛼2

𝜇
((𝑚 + 𝜁𝐴𝐵)2 −

1

4
) + 𝑐0 

𝛥2 =
𝜇

2ℏ
2𝛼2

(𝑎0 − 𝑐0) +
𝜇2𝜔𝐵

2

4ℏ
2𝛼2 − (𝑚 + 𝜁𝐴𝐵)2 −

1

4
 

     (26) 

Put equation (25) into equation (24) we obtain  

𝑍(𝛽) = ∑ 𝑒
−𝛽[𝛥1−

2ℏ
2𝛼2

𝜇
(
𝛥2−(𝑛+𝛫̂)

2

2(𝑛+𝛫̂)
)

2

]

 
𝑛𝑚𝑎𝑥∑
𝑛=0

 

 (27) 

where gives the maximum value of the quantum number 

obtaining by setting the derivative of equation (25) to 

zero. 

Classically, we replace the summation of equation (27) 

with an integral of the form,   (28) 

𝛶̂ =
ℏ
2𝛼2𝛥2

2

4𝜇
, 𝛸̂ =

ℏ
2𝛼2𝛥2

𝜇
+ 𝛥1, 𝐽 =

ℏ
2𝛼2

4𝜇
 (29) 

Mathematica software is used to evaluate equation (28) 

and the expression of the partition function becomes: 

𝑍(𝛽) = −
𝑒−𝛸̂𝛽−2𝜃√𝜋𝑛Erf[(𝛺+𝑒4𝜃−𝛺−)−(𝛱+𝑒4𝜃+𝛱−)]

𝑚𝑎𝑥

4√−𝐽𝛽
 

     (30) 

where  𝜃 = √−𝛶̂𝛽√−𝐽𝛽 

𝛺+ =
√−𝛶̂𝛽

2𝐾̂
+ 2𝐾√−𝐽𝛽 ; Ω− =

√−𝛶̂𝛽

2𝐾̂
− 2𝐾√−𝐽𝛽  

𝛱+ = 2𝐾√−𝐽𝛽 + √−𝐽𝛽𝑛
√−𝛶̂𝛽

2𝐾̂+𝑛𝑚𝑎𝑥;  −̂√−𝐽𝛽√−𝐽𝛽𝑚𝑎𝑥𝑚𝑎𝑥

     

(31) 

Equation (30) serves as the fundamental distribution 

function from which various thermodynamic and 

magnetic properties of the ARP system are derived. 

These include the free energy, internal energy, specific 

heat capacity, and entropy. The magnetization at finite 

temperatures and magnetic susceptibility at finite 

temperatures are also included. Furthermore, the 

corresponding thermodynamic and magnetic functions, 

as well as the magnetization and magnetic susceptibility 

at zero temperature, can be evaluated using the 

following expressions (Koscik & Okopinska 2007; 

Elsaid et al., 2020); 

Free energy 𝐹(𝛽) = −
1

𝛽
𝑙𝑛 𝑍 (𝛽) 

Entropy 𝑆(𝛽) = −𝑘𝛽
𝜕𝐹(𝛽)

𝜕𝛽
 

Internal energy 𝑈(𝛽) =
𝜕 𝑙𝑛 𝑍(𝛽)

𝜕𝛽
 

Specific heat capacity 𝐶𝑉(𝛽) = 𝑘𝐵
𝜕𝑈(𝛽)

𝜕𝛽
 

Magnetization at finite temperatures  

𝑀(𝛽) =
1

𝛽
(

1

𝑍(𝛽)
) (

𝜕𝑍(𝛽)

𝜕𝛽
)  

Magnetic susceptibility at finite temperatures 𝜒𝑚(𝛽) =
𝜕𝑀(𝛽)

𝜕𝛽
 

Magnetization at zero temperature in a state (𝑛,𝑚) 

𝜒𝑚(𝛽) =
𝜕𝑀(𝛽)

𝜕𝛽
 

Magnetic susceptibility at zero temperature 

𝜒𝑛𝑚(𝜔𝐵 , 𝜁𝐴𝐵) =
𝜕𝑀(𝜔𝐵,𝜁𝐴𝐵)

𝜕𝐵
 

 

RESULTS AND DISCUSSION 

In this study, we analytically solved the 2D Schrödinger 

equation with the Attractive Radial Potential (ARP) 

using the Nikiforov-Uvarov Functional Analysis 

(NUFA) approach. The closed-form energy spectrum 

and the associated unnormalized wavefunction appear in 

Eqs. (19) and (23). The numerical computations were 

performed with the following arbitrary parameter 

values:𝑎0 = 6,𝑏0 = 𝑐0 = 3,𝛼 = 0.5 andℏ = 𝜇 = 𝜏 = 1.  

 

Energy eigenvalue 

Figures 1(a–d) present the variation of the energy 

eigenvalues of the Attractive Radial Potential (ARP) 

model as functions of the external magnetic field and 

Aharonov-Bohm (AB) flux field. In Figures 1(a) and 

1(b), the energy eigenvalues are observed to decrease 

with increasing external magnetic field under varying 

AB flux parameters for the cases when 𝑚 = 𝑛 = 0and 

𝑚 = 𝑛 = 1. Both cases reveal a consistent influence of 

the AB flux field on the energy spectra. Similarly, in 

Figures 1(c) and 1(d), the energy eigenvalues decrease 

as the AB flux parameter increases for different values 

of the external magnetic field. These cases also exhibit a 

uniform influence of the external magnetic field on the 

energy levels. Figures 2(a–d) illustrate the dependence 

of the ARP model’s energy eigenvalues on the principal 

quantum number (𝑛)and magnetic quantum 

number(𝑚). In Figure 2(a), the energy eigenvalues 

decrease with increasing principal quantum number for 

various AB flux parameters. In Figure 2(b), a similar 

decreasing trend is observed as the principal quantum 

number increases under different external magnetic 

field. Furthermore, Figure 2(c) shows that the energy 

eigenvalues decrease as the magnetic quantum number 

increases for varying AB flux parameters, while Figure 

2(d) indicates a comparable behavior with increasing 

magnetic quantum number under different external 

magnetic field strengths. 
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Figure 1: Plots of energy eigenvalue as a function of (a-b) External magnetic field ωB varying 𝛇𝐀𝐁 flux for m = n =
0 andφAB. (c-d) AB flux 𝛇𝐀𝐁 varying ωB for m = n = 0 andm = n = 1. 

 

 
 

  
Figure 2: Plots of energy eigenvalue as a function of (a-b) Principle quantum number (n) varying ζAB andωB. (c-d) 

Magnetic quantum number (m) varying ζAB and ωB 
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Magnetization and Magnetic Susceptibility at Zero 

Temperature 

In Figures 3(a–d), the magnetization of the ARP system 

at zero temperature under the influence of an external 

magnetic field and Aharonov-Bohm (AB) flux field is 

illustrated. Figures 3(a) and 3(b) present the variation of 

magnetization with respect to the external magnetic 

field (𝜔𝐵) for different values of the AB flux 

field(𝜁𝐴𝐵). It is observed that the magnetization 

increases monotonically as the external magnetic field 

(𝜔𝐵)increases. Beyond a particular value of the external 

magnetic field, the energies begin to decrease and this 

behavior remains consistent across all considered cases 

when 𝑚 = 𝑛 = 0and𝑚 = 𝑛 = 1. Figures 3(c) and 3(d) 

depict the magnetization plot against AB flux field 

(𝜁𝐴𝐵)for varying external magnetic field(𝜔𝐵). The 

results show that magnetization decreases with 

increasing external magnetic field (𝜔𝐵)for 𝑚 = 𝑛 =
0and𝑚 = 𝑛 = 1. Moreover, the magnitude of 

magnetization is higher when both AB flux and the 

external magnetic field are simultaneously present or at 

higher values in the system. Figures 4(a–d), display the 

magnetic susceptibility of the ARP at zero temperature 

under the combined influence of an external magnetic 

field and AB flux field. In Figures 4(a) and 4(b), the 

magnetic susceptibility is plotted against the external 

magnetic field (𝜔𝐵)for different AB flux field 

(𝜁𝐴𝐵)values. The plots indicate that magnetic 

susceptibility decreases monotonically as the external 

magnetic field (𝜔𝐵) increases, particularly for 𝑚 = 𝑛 =
0and𝑚 = 𝑛 = 1. In Figure 4(c), the magnetic 

susceptibility exhibits a nearly linear trend as the AB 

flux field (𝜁𝐴𝐵) increases for different values of the 

external magnetic field(𝜔𝐵). However, at low AB flux 

values, a sharp initial rise is observed before a gradual 

decline at higher flux values. Generally, the magnetic 

susceptibility decreases with increasing AB 

flux(𝜔𝐵)when𝑚 = 𝑛 = 0. Figure 4(d) further examines 

the effect of the AB flux field (𝜁𝐴𝐵) on the zero-

temperature of magnetic susceptibility for varying 

external magnetic field(𝜔𝐵). It is evident that the 

magnetic susceptibility first increases and reach a 

particular point before decreasing as the AB flux field 

(𝜁𝐴𝐵) increases, especially when𝑚 = 𝑛 = 1. 

 

  

  
Figure 3: Plots of Magnetization at zero temperature against (a-b) External Magnetic Field ωB varying AB flux ζAB 

andωB. (c-d) AB flux ζAB varying ωB 
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Figure 4: Plots of Magnetic Susceptibility at zero temperature against (a-b) External Magnetic Field ωB varying AB 

fluxζAB andωB. (c-d) AB flux ζAB varying B ωB 

 

Partition function 

Figures 5-9 present the graphical behavior of various 

thermodynamic quantities-namely the partition function, 

Helmholtz free energy, entropy, internal energy, and 

specific heat capacity of the Attractive Radial Potential 

(ARP) system under the influence of external magnetic 

and Aharonov-Bohm (AB) flux fields. In Figure 5(a), 

the partition function 𝑍(𝜔𝐵 , 𝜁AB, 𝛽) is plotted against the 

external magnetic field 𝜔𝐵 for a fixed value of the AB 

flux field 𝜁AB 
at different temperatures𝛽. The results 

reveal that the partition function increases 

monotonically with increasing external magnetic 

field𝜔𝐵. Moreover, at higher temperatures𝛽 = 0.06, the 

partition function 𝑍(𝜔𝐵 , 𝜁AB, 𝛽) rises more significantly, 

showing that temperature enhances the statistical weight 

of accessible energy states when AB flux field 𝜁𝐴𝐵  
is 

fixed. Figure 5(b) illustrates the variation of the partition 

function 𝑍(𝜔𝐵 , 𝜁AB, 𝛽) with the AB flux field 𝜁ABfor a 

fixed value of external magnetic field 𝜔𝐵 varying𝛽. The 

decreases in partition function 𝑍(𝜔𝐵 , 𝜁AB, 𝛽) due to the 

increased in AB flux field𝜁AB, shows that the AB flux 

field attains to suppress the thermodynamic activity of 

the system. This trend is consistent within all 

temperature ranges considered, signifying that the AB 

field exerts a uniform moderating effect on the partition 

function. 

Figure 5(c), shows the plot of partition function 

𝑍(𝜔𝐵 , 𝜁AB, 𝛽) as a function of temperature 𝛽 varying 

magnetic field strengths 𝜔𝐵 at a fixed AB flux field𝜁𝐴𝐵 . 

The plot revealed that the partition function 

𝑍(𝜔𝐵 , 𝜁AB, 𝛽) increases steadily with temperature 𝛽 in 

the region2.0 < 𝛽 < 3.0, reflecting enhanced thermal 

excitations. However, beyond a certain temperature 

range0.5 < 𝛽 < 2.0, the partition function becomes 

nearly constant, suggesting saturation of accessible 

energy states. Additionally, an increase in the magnetic 

field 𝜔𝐵 tends to reduce the partition 

function𝑍(𝜔𝐵 , 𝜁AB, 𝛽), demonstrating the field’s 

restraining effect on the system’s thermodynamic 

response. Figure 5(d) depicts the dependence of the 

partition function 𝑍(𝜔𝐵 , 𝜁AB, 𝛽) on temperature 𝛽for 

different AB flux field 𝜁𝐴𝐵values at a fixed magnetic 

field𝜔𝐵. Initially, the partition function 𝑍(𝜔𝐵 , 𝜁AB , 𝛽) 

remains nearly constant with temperature𝛽, but all the 

curves converge at a temperature𝛽 = 0.6, after which a 

simultaneous and pronounced increase in the partition 

function 𝑍(𝜔𝐵 , 𝜁AB, 𝛽) is observed. In the 

pseudoconstant region, the partition function 

𝑍(𝜔𝐵 , 𝜁AB, 𝛽) is lower for higher AB flux values; 

however, beyond this region, it increases with rising𝜁𝐴𝐵 , 

indicating that at elevated temperatures, the AB flux 

field enhances the system’s partition function. 
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Figure 5: Plots of partition function Z(ωB, ζAB, β) as a function of (a) External Magnetic Field ωB varying β (b) AB 

fluxζAB varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB  

 

The Helmholtz free energy for the Attractive Radial 

Potential (ARP) system in the presence of Aharonov-

Bohm (AB) flux and external magnetic fields is 

depicted in Figure 6. In Figure 6(a), the variation of 

Helmholtz free energy 𝐹(𝜔𝐵 , 𝜁AB , 𝛽) with respect to the 

external magnetic field 𝜔𝐵 is shown for fixed values of 

the AB flux field 𝜁ABat different temperatures𝛽. The 

results indicate that free energy decreases as external 

magnetic field increases, implying that a stronger 

magnetic field reduces the system’s available free 

energy, thereby lowering its thermodynamic potential. 

Figure 6(b) illustrates the dependence of the Helmholtz 

free energy 𝐹(𝜔𝐵 , 𝜁AB, 𝛽) on the AB flux field 𝜁ABfor 

fixed external magnetic field strengths 𝜔𝐵 while varying 

temperature𝛽. It is observed that free energy increases 

progressively with increasing AB flux field, indicating 

that the AB flux enhances the system’s stored energy 

and contributes to the rise in free energy. 

In Figure 6(c), the Helmholtz free energy 𝐹(𝜔𝐵 , 𝜁AB, 𝛽) 

is plotted against temperature 𝛽 for different magnetic 

field values at a fixed AB flux. The free energy exhibits 

a steady, monotonic increase with temperature, 

suggesting that as the system gains thermal energy, its 

free energy grows correspondingly. A consistent 

influence of the magnetic field is observed for𝜔𝐵 =
0.05𝑇, 𝜔𝐵 = 0.10𝑇 and𝜔𝐵 = 0.15𝑇, showing that the 

external field uniformly affects the system’s energetic 

response across the temperature range. Figure 6(d) 

shows the variation of Helmholtz free energy 

𝐹(𝜔𝐵 , 𝜁AB, 𝛽)with temperature 𝛽 for several AB flux 

field values at a fixed magnetic field. The plot reveals 

that free energy decreases with increasing temperature 

when 𝜁AB = 4and𝜁AB = 5, while the free energy 

increases monotonically when𝜁AB = 2. Furthermore, 

free energy is generally higher at stronger AB flux 

fields, even when the overall trend is declining. This 

behavior suggests that an intense AB flux field can 

significantly elevate the system’s free energy. The 

observed decrease in free energy with temperature in 

some cases can be attributed to thermal disorder 

increases. 
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Figure 6: Plots of Helmholtz free energy F(ωB, ζAB, β) as a function (a) External Magnetic Field ωB varying β (b) 

AB fluxζAB varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB 

 

The entropy of the Attractive Radial Potential (ARP) 

system in the presence of external magnetic and 

Aharonov-Bohm (AB) flux fields exhibits a similar 

trend to that observed for the Helmholtz free energy, as 

shown in Figure 7. In Figure 7(a), the entropy 

𝑆(𝜔𝐵 , 𝜁AB, 𝛽) is plotted against the external magnetic 

field 𝜔𝐵 for fixed values of the AB flux field 𝜁ABat 

different temperatures𝛽. The plot reveals that entropy 

decreases with increasing magnetic field, indicating that 

a stronger magnetic field restricts the number of 

accessible microstates and reduces the degree of 

disorder in the system consistent with the behavior of 

the Helmholtz free energy. Figure 7(b) presents the 

variation of entropy 𝑆(𝜔𝐵 , 𝜁AB, 𝛽)with the AB flux field 

𝜁ABvarying temperatures𝛽 at a fixed value of𝜔𝐵. The 

entropy of the system increases with increasing AB flux 

field, which indicate that the AB flux affects the 

system’s configurational disorder and gives rise to 

greater thermodynamic behavior, showing the same 

trend in the free energy.  

In Figure 7(c), entropy 𝑆(𝜔𝐵 , 𝜁AB , 𝛽)is plotted as a 

function of temperature 𝛽 for a fixed AB flux field 

varying magnetic field. The entropy of the system depict 

a monotonically increase with temperature, indicating 

that higher thermal energy influence molecular agitation 

and disorder from the system. A uniform influence of 

the magnetic field is observed across the examined 

temperature range, similar to the consistent effect seen 

in the Helmholtz free energy plots. Figure 7(d) shows 

the variation of entropy 𝑆(𝜔𝐵 , 𝜁AB, 𝛽)with temperature 

for different AB flux field values at a fixed magnetic 

field. At lower temperatures, entropy decreases slightly 

with increasing temperature 𝛽 at higher AB flux values 

but increases steadily for lower AB flux intensities. The 

overall pattern is analogous to that of the Helmholtz free 

energy, where an intense AB flux field amplifies both 

entropy and free energy. This similarity confirms the 

close thermodynamic relationship between the two 

quantities, as both are influenced by the combined 

effects of temperature, magnetic field, and AB flux in 

nearly identical ways.  
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Figure 7: Plots of Entropy S(ωB, ζAB, β) as a function of (a) External Magnetic Field ωB varying β (b) AB fluxζAB 

varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB 

 

Figure 8 illustrates the variation of the internal energy of 

the Attractive Radial Potential (ARP) system under the 

combined influence of external magnetic and Aharonov-

Bohm (AB) flux fields. In Figure 8(a), the internal 

energy 𝑈(𝜔𝐵 , 𝜁AB , 𝛽) is plotted as a function of the 

external magnetic field 𝜔𝐵 for fixed values of the AB 

flux field 𝜁ABat different temperatures𝛽. The results 

show that internal energy decreases with increasing 

magnetic field, indicating that the application of a 

stronger magnetic field reduces the system’s total 

internal energy due to the lowering of energy state 

occupancy. Figure 8(b) presents the variation of internal 

energy 𝑈(𝜔𝐵 , 𝜁AB , 𝛽) with the AB flux field 𝜁ABfor fixed 

external magnetic field 𝜔𝐵values while varying 

temperature𝛽. It is observed that internal energy 

increases with increasing AB flux field, suggesting that 

the AB flux field enhances the energy levels of the 

system and contributes to higher internal energy values. 

Figure 8(c), shows the plot of the internal energy 

𝑈(𝜔𝐵 , 𝜁AB, 𝛽) against temperature 𝛽 for a different 

value of magnetic field, at constant AB flux field. The 

result depict that the internal energy decreases linearly 

with increasing temperature, which reveal that thermal 

excitation in the system contribute to a redistribution of 

energy levels within the possible available states, as a 

result in a gradual decline in the total internal energy of 

the system. The same behavior is observed across all the 

values of magnetic field consider, which indicates a 

consistency in thermal activity. Figure 8(d) shows the 

plot of the internal energy 𝑈(𝜔𝐵 , 𝜁AB, 𝛽)against 

temperature𝛽 for different value of AB flux field at 

constant magnetic field. The plot demonstrates a steady 

decrease in internal energy as the temperature parameter 

𝛽increases. This relationship confirms that the internal 

energy diminishes at lower temperatures and is 

significantly influenced by the strength of the AB flux 

field. 
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Figure 8: Plots of Internal Energy U(ωB, ζAB, β) as a function of (a) External Magnetic Field ωB varying β (b) AB 

fluxζAB varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB 

 

Figure 9 illustrates the specific heat capacity 

𝐶𝑣(𝜔𝐵 , 𝜁AB, 𝛽)of the ARP system under the influence of 

both the Aharonov-Bohm (AB) flux and external 

magnetic fields. In Figure 9(a), the specific heat 

capacity is plotted against the external magnetic field 

for fixed values of the AB flux field at varying 

temperatures. The result shows that the specific heat 

capacity increases linearly with increasing external 

magnetic field. Figure 9(b) presents the variation of 

specific heat capacity with the AB flux field for fixed 

values of the external magnetic field at different 

temperatures. It is observed that the specific heat 

capacity decreases as the AB flux field increases. In 

Figure 9(c), the specific heat capacity is plotted as a 

function of temperature for different values of the 

external magnetic field while keeping the AB flux field 

constant. The plot reveals a monotonic increase in 

specific heat capacity with rising temperature. Similarly, 

Figure 9(d) shows the dependence of the system’s 

specific heat capacity on temperature for different 

values of the AB flux field at a fixed external magnetic 

field. The specific heat capacity increases consistently 

with increasing temperature. 
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Figure 9: Plots of Specific heat capacity Cv(ωB, ζAB, β) as a function of (a) External Magnetic Field ωB varying β 

(b) AB fluxζAB varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB 

 

Magnetization and Magnetic Susceptibility at Finite 

Temperature 

Figure 10 presents the plots of magnetization at finite 

temperature for the Attractive Radial Potential (ARP) 

system under the influence of external magnetic and 

Aharonov-Bohm (AB) flux fields. In Figure 10(a), the 

magnetization at finite temperature 𝑀(𝜔𝐵 , 𝜁AB, 𝛽) is 

plotted against the external magnetic field 𝜔𝐵 for fixed 

values of the AB flux field 𝜁ABat different 

temperatures𝛽. The results show that 𝑀(𝜔𝐵 , 𝜁AB, 𝛽) 

increases linearly with increasing𝜔𝐵, indicating that the 

external magnetic field strengthens the magnetic 

response of the system due to enhanced spin alignment 

at finite temperature. Figure 10(b) depicts the variation 

of magnetization 𝑀(𝜔𝐵 , 𝜁AB, 𝛽) with the AB flux field 

𝜁ABfor fixed external magnetic field 𝜔𝐵 at varying 

temperature𝛽. The linear increase of𝑀(𝜔𝐵 , 𝜁AB , 𝛽) with 

increasing𝜁AB, is observed. The result suggests that the 

AB flux field influence positively to magnetization of 

the system. This characteristics behavior is the same 

with the results obtained at zero temperature, to confirm 

the persistent effects of the AB flux field on magnetic 

behaviour of the. 

In Figure 10(c), the magnetization at finite 

temperature𝑀(𝜔𝐵 , 𝜁AB, 𝛽) is plotted as a function of 

temperature 𝛽 for different external magnetic field 

strengths 𝜔𝐵 at a fixed AB flux field𝜁AB. The results 

reveal that 𝑀(𝜔𝐵 , 𝜁AB, 𝛽) decreases with increasing 

temperature𝛽, indicating that thermal agitation weakens 

magnetic ordering by randomizing spin orientations. 

Finally, Figure 10(d) shows the magnetization at finite 

temperature𝑀(𝜔𝐵 , 𝜁AB, 𝛽) as a function of temperature𝛽 

for different AB flux field 𝜁ABvalues at a fixed external 

magnetic field𝜔𝐵. The plots demonstrate that 

𝑀(𝜔𝐵 , 𝜁AB, 𝛽) decreases with increasing temperature𝛽 

for all 𝜁ABvalues considered. This trend confirms that, 

although both the magnetic and AB flux fields enhance 

magnetization, thermal effects at higher temperatures 

tend to suppress it by reducing the degree of spin 

alignment within the system. 

Figure 11 presents the plots of magnetic susceptibility at 

finite temperature for the Attractive Radial Potential 

(ARP) system under the influence of external magnetic 

and Aharonov-Bohm (AB) flux fields. In Figure 11(a), 

the magnetic susceptibility at finite 

temperature,𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽), is plotted against the 

external magnetic field 𝜔𝐵 for fixed values of the AB 

flux field 𝜁ABat different temperatures𝛽. The results 

indicate that 𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) decreases with increasing 

temperature, implying that thermal agitation weakens 

the system’s magnetic response. However, at higher 

magnetic field, the system becomes saturated, which 

indicate a limited susceptibility beyond a certain value 

of𝜔𝐵. The result also reveals that the system 

predominantly indicates a paramagnetic property at 

𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) > 0 within the range value of𝜔𝐵, 

consistent with the zero-temperature results. In the 

region0.0𝑇 < 𝜔𝐵 < 0.8𝑇 the results of the curves 𝛽 =
0.04and𝛽 = 0.06 shows nearly constant pattern and a 

sharp increase is observed beyond𝜔𝐵 = 0.8𝑇. 

Figure 11(b) reveals the magnetic susceptibility 

𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) against AB flux field 𝜁ABat constant 

values of the external magnetic field 𝜔𝐵 varying 

temperature𝛽. The results shows that as 

𝜁ABincreases,𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽)) decreases linearly, 

demonstrating that a stronger AB flux suppresses the 

magnetic response of the system. However, 

𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) increases with rising temperature, 

reflecting enhanced thermal contributions to 

magnetization. The system exhibits diamagnetic 

behavior for 𝛽 = 0.04 and𝛽 = 0.06, while a slight 

paramagnetic tendency is observed at𝛽 = 0.02. 

In Figure 11(c), the susceptibility 𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) is 

plotted against temperature 𝛽 for different external 

magnetic field strengths at a fixed AB flux field𝜁AB. The 

plot shows that𝜒𝑀(𝜔𝐵 , 𝜁AB , 𝛽), decreases monotonically 

with increasing temperature, confirming that thermal 
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effects weaken the magnetization of the system. 

Similarly, the susceptibility decreases as 𝜔𝐵 increases, 

indicating that stronger magnetic fields tend to stabilize 

the spin orientations, thereby reducing the overall 

response. This variation of 𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) with 

temperature reflects a diamagnetic behavior across the 

different 𝜔𝐵 values considered. 

Finally, Figure 11(d) displays the magnetic 

susceptibility 𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) as a function of 

temperature for different AB flux field values at a fixed 

external magnetic field. The results show that 

𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) increases gradually with temperature, 

while it decreases with increasing AB flux field 

strength. This inverse relationship between 

𝜒𝑀(𝜔𝐵 , 𝜁AB, 𝛽) and 𝜁ABagain indicates diamagnetic 

behavior, implying that the AB flux field opposes 

changes in the system’s magnetic moment, particularly 

at higher flux intensities. 

 

 
 

  
Figure 10: Plots of Magnetization at finite temperature M(ωB, ζAB, β) as a function of (a) External Magnetic Field 

ωB varying β (b) AB fluxζAB varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB 
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Figure 11: Plots of Magnetization at finite temperature χM(ωB, ζAB, β) as a function of (a) External Magnetic Field 

ωB varying β (b) AB fluxζAB varying β (c) Temperature β varying ωB (d) Temperature β varying ζAB 

 

CONCLUSION  

In this research manuscript, we analytically solve the 2D 

non-relativistic Schrödinger equation for the Attractive 

Radial Potential (ARP) model influenced by Aharonov-

Bohm flux and external magnetic fields using the 

Nikiforov-Uvarov Functional Analysis (NUFA) 

approach. Based on the derived energy eigenvalues, we 

further calculate key thermo-magnetic quantities such as 

free energy, internal energy, specific heat capacity, 

entropy, magnetization, and magnetic susceptibility. 

Our result shows that the combine influence of the AB 

flux and magnetic field significantly affects energy 

spectrum of the system and its thermodynamic 

properties. The result also reveals that the energy 

eigenvalues decreases with an increase in AB flux and 

magnetic fields. The partition functions of the system 

and thermodynamic quantities show strong temperature 

response, for low temperatures value. 

The free energy and entropy shows a uniform trend, by 

decreasing with increasing magnetic field and AB flux 

field strength. This trend suggests that the AB flux 

contribute to disorder and energy storage capacity in the 

system. The internal energy of the system decreases 

with temperature as well as magnetic field, confirming 

that higher external fields in the system enhance the 

accommodation of energy state in the system. 

Meanwhile, the specific heat capacity of the system also 

displays a peak value, behavior with discrete energy 

levels, which makes the transition between low- and 

high-temperature regimes. 

Additionally, the investigation of magnetization and 

magnetic susceptibility shows that both quantities 

increase with magnetic field and AB flux but decrease 

with temperature due to thermal agitation. The system 

considers exhibits predominant paramagnetic properties 

at low AB flux and temperature turn to weak 

diamagnetism under high AB flux conditions. The 

results of this study can be extended to molecular 

physics (Okorie et al., 2021). 

 

ACKNOWLEDGMENTS  

We gratefully acknowledge the National Mathematical 

Centre, Abuja, for their contribution to the development 

of this research work.  

 

REFERENCES 

Abu-Shady, M. & Fath-Allah, H. M. (2023). The 

parametric generalized fractional Nikiforov-Uvarov 

method and its applications. Eastern European Journal 

of Physics. 3, 248–262. 

 

Bayrak, O., Boztosun I and Ciftci, H. (2007). Exact 

Analytical Solutions to the Kratzer Potential by the 

Asymptotic Iteration Method,” International Journal of 

Quantum Che- mistry, Vol. 107, No. 3, pp. 540-544. 

https://doi.org/10.1002/qua.21141  

 

Çiftçi, H., Hall,R. L and Saad, N. (2005). Iterative 

solutions to the Dirac equation, Physics. Letter A 340, 

388  

 

Dirac, P. A. The Principles of Quantum Mechanics 

(Clarendon Press, Oxford, 1958). 

 

Dong, S. H., Factorization method in quantum 

mechanics (Springer, Netherlands, 2007) 

 

Edet, C.O., Amadi, P.O., Okorie, U.S., Tas, A., Ikot, 

A.N and Rampho, G. d (2020). Solutions of Schrodinger 

equation and thermal properties of generalized 

trigonometric Poschl-Teller potential, Revista Mexicana 

de Fısica 66 (6) 824–839 

https://doi.org/10.31349/RevMexFis.65.333 

 

Edet, C.O., Okoi, P. O., Yusuf, A. S., Ushie,P. O and 

Amadi, P. O (2020). Thermal properties and magnetic 

susceptibility of hellmann potential in Aharonov-Bohm 

(AB) flux and magnetic f ields at zero and finite 

temperatures. Indian Journal of Physics 

https://doi.org/10.1007/s12648-019-01650-0  

https://doi.org/10.1002/qua.21141
https://doi.org/10.31349/RevMexFis.65.333
https://doi.org/10.1007/s12648-019-01650-0


Thermo-Magnetic properties of Two-Dim…  Imrana et al., NJTEP2025 3(4): 45-60 

59 

NIGERIAN JOURNAL OF THEORETICAL AND ENVIRONMENTAL PHYSICS 

 

Elsaid, M.K., Shaer, A., Hjaz, E. and Yahya, M.H. 

(2020) Impurity Effects on the Magnetization and 

Magnetic Susceptibility of an Electron Confined in a 

Quantum Ring under the Presence of an External 

Magnetic Field. Chinese Journal of Physics, 64, 9-17. 

https://doi.org/10.1016/j.cjph.2020.01.002 

 

Eshghi, M and Hamzavi, M. (2012). Spin Symmetry in 

Dirac-Attractive Radial Problem and Tensor Potential, 

Communication in theoretical physics, 57, 355 

https://doi.org/10.1088/0253-6102/57/3/05  

 

Eshghi, M., Mehraban, H and Ikhdair, S. M. (2017). 

Approximate energies and thermal properties of a 

position-dependent mass charged particle under external 

magnetic fields, Chinese Physics B 26, 060302 

 

Falaye, B. J., Sun, G. H., Ortigoz, R. S and Dong, S.H. 

(2016). Hydrogen atom in a Laser-Plasma, Physics 

Review E 93, 053201 

 

Greene, R. L & Aldrich, C. (1976). Variational wave 

functions for a screened Coulomb potential Physical 

Review A 14, 2363 

https://doi.org/10.1103/PhysRevA.14.2363 

 

Greiner, W. Relativistic Quantum Mechanics: Wave 

Equations (Springer, Berlin, 2000). 

 

Ikhdair, S. M and Falaye, B. J. (2014). Bound states of 

spatially dependent mass Dirac equation with the Eckart 

potential including Coulomb tensor interaction, The 

European Physical Journal Plus, 129.  

 

Ikot, A. N., Edet, C. O., Amadi, P. O., Okorie, U.S., 

Rampho, G. J., and Abdullah, H. Y. (2020). 

Thermodynamic properties of Aharanov-Bohm (AB) 

and magnetic fields with screened Kratzer potential, 

European Physical Journal D 74 159 

https://doi.org/10.1140/epjd/e2020-10084-9 

 

Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., 

Rampho, G. J. and Sever, R. The Nikiforov–Uvarov-

Functional Analysis (NUFA) Method: A New Approach 

for Solving Exponential-Type Potentials, Few-Body 

System. 62, 9 (2021) 

 

Ikot, A.N., Rampho, G.J., Amadi, P.O., Sithole, M. J., 

Okorie, U.S and . Lekala, M. I. (2020). Theoretic 

quantum information entropies for the generalized 

hyperbolic potential, Quantum Chemestry, 120, 24 

e26410 https://doi.org/10.1002/qua.26410 

 

Karayer, H. (2020). Study of the radial Schrödinger 

equation with external magnetic and AB flux fields by 

the extended Nikiforov–Uvarov method, European 

Physical Journal Plus 135, 70 

 

Karayer, H., Demirhan, D and Buyukkukih, F. (2015). 

Extension of Nikiforov-Uvarov method for the solution 

of Heun equation, Journal of Mathematical Physics, 56, 

06350  

 

Khordad, R. & Mirhosseini, B. (2015). Application of 

Tietz potential to study optical properties of spherical 

quantum dots. Pramana Journal of Physics, 85, 723–737  

 

Koscik, P and Okopinska, A. (2007). Quasi-exact 

solutions for two interacting electrons in two-

dimensional anisotropic dots, Journal of Physics A: 

Mathematical. Theory, 40 1045 (quant-ph/0607176). 

 

Landau, L. D. E. & Lifshitz, M. Quantum Mechanics, 

Non- Relativistic Theory (Pergamon, New York, 1977).  

Louis, H., Iserom, I. B., Akakuru, O. U., Nzeata-Ibe, N. 

A., Ikeuba, A. I., Magu, T. O., Amos, P. I.& Edet, C. O. 

(2018). I-state Solutions of the Relativistic and Non-

Relativistic Wave Equations for Modified Hylleraas-

Hulthen Potential Using the Nikiforov-Uvarov Quantum 

Formalism, Oriental Journal of Physical Science. 03,(1) 

03-09 

 

Nikiforov, A. F and Uvarov, V. B. Special functions of 

mathematical physics (Birkhauser, Basel, 1988) 

 

Okorie, U. S.; Ikot, A. N.; Onate, C. A.; Onyeaju, M. C.; 

Rampho, G. J. (2021). Bound and scattering states 

solutions of the Klein-Gordon equation with the 

attractive radial potential in higher dimensions, Modern 

Physics Letter A 36, No. 32, Article ID 2150230, 15 p. 

 

Okorie, U.S., Ikot, A.N and Chukwuocha, E. O. (2019). 

The Statistical Properties of The Varshni Potential 

Model Using Modified Factorization Method, Scientia 

Africana, Vol. 18 (No. 3), Pp 47-60 

 

Okorie, U.S., Edet, C.O., Ikot, A.N., Rampho G. J. and 

Sever, R. (2020). Thermal Properties of Deng-Fan-

Eckart Potential model using Poisson Summation 

Approach, Journal of Mathematical Chemistry. 58, 989 

https://doi.org/10.1007/s10910-020-01107-4  

 

Pekeris, C. L. (1934). The Rotation-Vibration Coupling 

in Diatomic Molecules Physical Review. 45, 98 

https://doi.org/10.1103/PhysRev.45.98  

 

Qiang, W. C and Dong, S. H. (2010). Proper 

quantization rule, Europhysics Letters. 89, 10003. 

https://doi.org/10.1209/0295-5075/89/10003 

 

https://doi.org/10.1016/j.cjph.2020.01.002
https://doi.org/10.1088/0253-6102/57/3/05
https://doi.org/10.1103/PhysRevA.14.2363
https://doi.org/10.1140/epjd/e2020-10084-9
https://doi.org/10.1002/qua.26410
https://doi.org/10.1007/s10910-020-01107-4
https://doi.org/10.1103/PhysRev.45.98
https://doi.org/10.1209/0295-5075/89/10003


Thermo-Magnetic properties of Two-Dim…  Imrana et al., NJTEP2025 3(4): 45-60 

60 

NIGERIAN JOURNAL OF THEORETICAL AND ENVIRONMENTAL PHYSICS 

Schiff, L. I. Quantum Mechanics (McGraw Hill, New 

York, 1995). 

 

Serrano, F. A., Xiao-Yan G., & Shi-Hai D. (2010). 

Qiang-Dong proper quantization rule and its 

applications to exactly solvable quantum systems. 

Journal of Mathematical Physics 51, 8, 082103  

 

Serrano, F. A., Cruz-Irisson, M and Dong, S. H. (2011). 

Proper quantization rule as a good candidate to 

semiclassical quantization rules, Annalen der Physik, 

523, 771-782 

 

Servatkhah, M., Khordad, R., Firoozi, A., Rastegar 

Sedehi, H. R. & Mohammadi, A. (2020). Low 

temperature behavior of entropy and specific heat of a 

three dimensional quantum wire: Shannon and Tsallis 

entropies. European Physical Journal B 93, 1–7  

 

Servatkhah, M., Khordad, R and Ghanbari, A. (2020). 

Accurate Prediction of Thermodynamic Functions of H2 

and LiH Using Theoretical Calculations, International 

Journal of Thermophysics. 41, 37  

 

Williams, B. W and Poulios, D. P. (1993). A simple 

method for generating exactly solvable quantum 

mechanical potentials, European Journal of Physics, 14, 

222 https://doi.org/10.1088/0143-0807/14/5/006  

 

 

 

https://doi.org/10.1088/0143-0807/14/5/006

